Skip to main content
Log in

Synthesis and antimicrobial activity of 3-aroyl-4-heteroaryl pyrroles and pyrazoles

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

A variety of bis heterocycles-heteroaryl pyrazoles (5) and pyrroles (6) were prepared from heteroaryl chalcones adopting 1,3-dipolar cycloaddition reaction and studied their antimicrobial activity. The compounds 5d and 5f having bromo and nitro substituents on the aromatic ring are the potent antimicrobial agents against Bacillus subtilis and Aspergillus niger.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Azam F, El-Gnidi BA, Alkskas IA, Ahmed MA (2010) Design, synthesis and anti-Parkinsonian evaluation of 3-alkyl/aryl-8-(furan-2-yl)thiazolo[5,4-e][1,2,4] triazolo[1,5-c]pyrimidine-2(3H)-thiones against neuroleptic-induced catalepsy and oxidative stress in mice. J Enzym Inhib Med Chem 25:818–826

    Article  CAS  Google Scholar 

  • Azoro C (2002) Antibacterial activity of crude aqueous extracts of Azadirachta indica on Salmonella Typhi. World J Biotechnol 3:347–357

    Google Scholar 

  • Bandyopadhyay D, Mukherjee S, Granados JC, Short JD, Banik BK (2012) Ultrasound-assisted bismuth nitrate-induced green synthesis of novel pyrrole derivatives and their biological evaluation as anticancer agent. Eur J Med Chem 50:209–215

    Article  CAS  PubMed  Google Scholar 

  • Bartels A, Liebscher J (1994) Enantioselective synthesis of hydroxyalkylcyclopropane carboxylic acid derivatives. Tetrahedron Asymmetry 5:1451–1452

    Article  CAS  Google Scholar 

  • Bekhit AA, Ashour HMA, Guemei AA (2005) Novel pyrazole derivatives as potential promising anti-inflammatory antimicrobial agents. Arch Pharm Chem Life Sci 338:167–174

    Article  CAS  Google Scholar 

  • Bellina F, Rossi R (2006) Synthesis and biological activity of pyrrole, pyrroline and pyrrolidine derivatives with two aryl groups on adjacent positions. Tetrahedron 62:7213–7256

    Article  CAS  Google Scholar 

  • Bhanu prakash T, Reddy LM, Padmaja A, Padmavathi V (2013) Synthesis and antimicrobial activity of azole derivatives. Chem Pharm Bull 61:516–523

    Article  Google Scholar 

  • Bishnu J, Sunil L, Anuja S (2009) Antibacterial property of different medicinal plants: Ocimum sanctum, Cinnamomum zeylanicum, Xanthoxylum armatum and Origanum majorana. J Sci Eng Technol 5:143–150

    Google Scholar 

  • Chung KT, Thomasson WR, Wu-Yuan CD (1990) Growth inhibition of selected food-borne bacteria, particularly Listeria monocytogenes, by plant extracts. J Appl Bacteriol 69:498–503

    Article  CAS  PubMed  Google Scholar 

  • Conti P, Pinto A, Tamborini L, Rizzo V, Micheli CD (2007) A regioselective route to 5-substituted pyrazole and pyrazoline-3-phosphonic acids and esters. Tetrahedron 63:5554–5560

    Article  CAS  Google Scholar 

  • Davis FA, Bowen KA, Xu H, Velvadapu V (2008) Synthesis of polysubstituted pyrroles from sulfinimines (N-sulfinyl imines). Tetrahedron 64:4174–4182

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eicher T, Hauptmann S, Speicher A (2004) The chemistry of heterocycles, 2nd edn; Structure, reactions, syntheses and applications, 2nd edn. Wiley, New York, pp 179–184

  • El-Sabbagh OI, Baraka MM, Ibrahim SM, Pannecouque C, Andrei G, Snoeck R, Balzarini J, Rashad AA (2009) Synthesis and antiviral activity of new pyrazole and thiazole derivatives. Eur J Med Chem 44:3746–3753

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Peng J, Hamann MT, Hu J-F (2008) Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem Rev 108:264–287

    Article  CAS  PubMed  Google Scholar 

  • French GL (2006) Bactericidal agents in the treatment of MRSA infections—the potential role of daptomycin. J Antimicrob Chemother 58:1107–1117

    Article  CAS  PubMed  Google Scholar 

  • Galley G, Paetzel M, Jones PG (1995) Diastereofacial selectivity of the cydoaddition of diazo compounds to enones. Tetrahedron 51:1631–1640

    Article  CAS  Google Scholar 

  • Goel A, Agarwal N, Singh FV, Sharon A, Tiwari P, Dixit M, Pratap R, Srivastava AK, Maulik PR, Ram VJ (2004) Antihyperglycemic activity of 2-methyl-3,4,5-triaryl- 1H-pyrroles in SLM and STZ models. Bioorg Med Chem Lett 14:1089–1094

    Article  CAS  PubMed  Google Scholar 

  • Gribble GW (2002) In: Padwa A, Pearson WH (eds) synthetic applications of 1,3-dipolar cycloaddition toward heterocycles and natural products. Wiley, New York, pp 681–755

  • Hantzsch A (1890) Ueber das sogenannte Cyanaceton. Ber Dtsch Chem Ges 23:1474–1476

    Article  Google Scholar 

  • Harrak Y, Rosell G, Daidone G, Plescia S, Schillaci D, Pujol MD (2007) Bioorg Med Chem 15:4876–4890

    Article  CAS  PubMed  Google Scholar 

  • Haszeldine RN, Scott DL, Tipping AE (1974) Carbene chemistry. Part III. Reactions of diazomethyltrimethylsilane. J Chem Soc Perkin Trans 1 12:1440–1443

  • Janovska D, Kubikova K, Kokoska L (2003) Screening for antimicrobial activity of some medicinal plants species of traditional Chinese medicine. Czech J Food Sci 21:107–110

    Google Scholar 

  • Jiang N, Li C-J (2004) Novel 1,3-dipolar cycloaddition of diazocarbonyl compounds to alkynes catalyzed by InCl3 in water. Chem Commun 394–395

  • Joshi SD, Vagdevi HM, Vaidya VP, Gadaginamath GS (2008) Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: a novel class of potential antibacterial and antitubercular agents. Eur J Med Chem 43:1989–1996

    Article  CAS  PubMed  Google Scholar 

  • Kamal A, Khan MNA, Reddy KS, Rohini K (2007) Synthesis of a new class of 2-anilino substituted nicotinyl arylsulfonylhydrazides as potential anticancer and antibacterial agents. Bioorg Med Chem 15:1004–1013

    Article  CAS  PubMed  Google Scholar 

  • Katritzky AR, Wang M, Zhang S, Voronkov MV, Steel PJ (2001) Regioselective synthesis of polysubstituted pyrazoles and isoxazoles. J Org Chem 66:6787–6791

    Article  CAS  PubMed  Google Scholar 

  • Knorr L (1884) Synthese von Pyrrolderivaten. Ber Dtsch Chem Ges 17:1635–1642

    Article  Google Scholar 

  • Komatsu M, Minakata S, Oderaotoshi Y (2006) 1,4-Sila- and stannatropic strategy for generation of 1,3-dipoles and its application to heterocyclic synthesis ARKIVOC. vii, 370–389

  • Kotlyar VN, Pushkarev A, Orlov VD, Chernenko VN, Desenko SM (2010) Thiazole analogs of chalcones, capable of functionalization at the heterocyclic nucleus. Chem Heterocycl Compd 46:334–341

    Article  CAS  Google Scholar 

  • Lamberth C (2007) Pyrazole chemistry in crop protection. Heterocycles 71:1467–1502

    Article  CAS  Google Scholar 

  • Moore KW, Bonner K, Jones EA, Emms F, Leeson PD, Marwood R, Patel S, Rowley M, Thomas S, Carling RW (1999) 4-N-linked-heterocyclic piperidine derivatives with high affinity and selectivity for human dopamine D 4 receptors. Bioorg Med Chem Lett 9:1285–1290

    Article  CAS  PubMed  Google Scholar 

  • Ouyang G, Cai XJ, Chen Z, Song BA, Bhadury PS, Yang S, Jin LH, Xue W, Hu DY, Zeng S (2008) Synthesis and antiviral activities of pyrazole derivatives containing an oxime moiety. J Agric Food Chem 56:10160–10167

    Article  CAS  PubMed  Google Scholar 

  • Padmavathi V, Radha Lakshmi T, Mahesh K, Padmaja A (2009) Synthesis and biologivcal activity of a new class of sulfone-linked pyrrolylpyrazoles and pyrrolylisoxazoles from methyl-3-aryl-2-(E-aryl ethane sulfonyl)acrylate. Chem Pharm Bull 57:1200–1205

    Article  CAS  PubMed  Google Scholar 

  • Padmavathi V, Prema kumari C, Venkatesh BC, Padmaja A (2011) Synthesis and antimicrobial activity of amido linked pyrrolyl and pyrazolyl-oxazoles, thiazoles and imidazoles. Eur J Med Chem 46:5317–5326

    Article  CAS  PubMed  Google Scholar 

  • Penning TD, Talley JJ, Bertenshaw SR, Carter JS, Collins PW, Docter S, Graneto MJ, Lee LF, Malech JW, Miyashiro JM, Rogers RS, Rogier DJ, Yu SS, Anderson GD, Burton EG, Cogburn JN, Gregory SA, Koboldt CM, Perkins WE, Seibert K, Veenhuizen AW, Zhang YY, Isakson PC (1997) Synthesis and biological evaluation of the 1,5-diarylpyrazole class of cyclooxygenase-2 inhibitors: identification of 4-[5-(4-methylphenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl] benzenesulfonamide (SC-58635, Celecoxib). J Med Chem 40:1347–1365

    Article  CAS  PubMed  Google Scholar 

  • Penning TD, Khilevich A, Chen BB, Russell MA, Boys ML, Wang Y, Duffin T, Engleman VW, Finn MB, Freeman SK, Hanneke ML, Keene JL, Klover JA, Nickols GA, Nickols MA, Rader RK, Settle SL, Shannon KE, Steininger CN, Westlin MM, Westlin WF (2006) Synthesis of pyrazoles and isoxazoles as potent avb3 receptor antagonists. Bioorg Med Chem Lett 16:3156–3161

    Article  CAS  PubMed  Google Scholar 

  • Qi X, Ready JM (2007) Copper-promoted cycloaddition of diazocarbonyl compounds and acetylides. Angew Chem Int Ed 46:3242–3244

    Article  CAS  Google Scholar 

  • Schmuck C, Rupprecht D (2007) The synthesis of highly functionalized pyrroles: a challenge in regioselectivity and chemical reactivity. Synthesis 20:3095–3098

    Article  Google Scholar 

  • Seyferth D, Menzel H, Dow AW, Flood TC (1972) Trimethylsilyl-substituted diazoalkanes: I. Trimethylsilyldiazomethane. J Organom Chem 2:279–290

    Article  Google Scholar 

  • Sharma RN, Xavier FP, Vasu KK, Chaturvedi SC, Pancholi SS (2009) Synthesis of 4-benzyl-1,3-thiazole derivatives as potential anti-inflammatory agents: an analogue-based drug design approach. J Enzym Inhib Med Chem 24:890–897

    Article  CAS  Google Scholar 

  • Singh SP, Naithani R, Aggarwal R, Prakesh O (1992) Indian J Heterocycl Chem 11:27

    Google Scholar 

  • Starcevic K, Kralj M, Ester K, Sabol I, Grce M, Pavelic K, Karminski-Zamola G (2007) Synthesis, antiviral and antitumor activity of 2-substituted-5-amidino- benzimidazoles. Bioorg Med Chem 15:4419–4426

    Article  CAS  PubMed  Google Scholar 

  • Stauffer SR, Katzenellenbogen JA (2000) Solid-phase synthesis of tetrasubstituted pyrazoles, novel ligands for the estrogen receptor. J Comb Chem 2:318–329

    Article  CAS  PubMed  Google Scholar 

  • Stauffer SR, Coletta CJ, Tedesco R, Nishiguchi G, Carlson K, Sun J, Katzenellenbogen BS, Katzenellenbogen JA (2000) Pyrazole ligands: structure–affinity/activity relationships and estrogen receptor-α-selective agonists. J Med Chem 43:4934–4947

    Article  CAS  PubMed  Google Scholar 

  • Stauffer SR, Huang Y, Coletta CJ, Tedesco R, Katzenellenbogen JA (2001) Estrogen pyrazoles: defining the pyrazole core structure and the orientation of substituents in the ligand binding pocket of the estrogen receptor. Bioorg Med Chem 9:141–150

    Article  CAS  PubMed  Google Scholar 

  • Villanova PA (1992) National committee for clinical laboratory standards, reference method for broth dilution antifungal susceptibility testing of yeasts, proposed standard NCCLS Document M27-P

  • Villanova PA (1993) National committee for clinical laboratory standards methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically, 3rd edn; approved standard. NCCLS publication M7-A3

  • Vuluga D, Legros J, Crousse B, Bonnet-Delpon D (2009) Synthesis of pyrazoles through catalyst-free cycloaddition of diazocompounds to alkynes. Green Chem 11:156–159

    Article  CAS  Google Scholar 

  • Wang M-Z, Xu H, Liu T-W, Feng Q, Yu S-J, Wang S-H, Li Z-M (2011) Design, synthesis and antifungal activities of novel pyrrole alkaloid analogs. Eur J Med Chem 46:1463–1472

    Article  CAS  PubMed  Google Scholar 

  • Washizuka KI, Nagai K, Minakata S, Ryu I, Komatsu M (1999) Novel generation of azomethine imines from ot-silylnitrosamines by 1,4-silatropic shift and their cycloaddition. Tetrahedron Lett 40:8849–8853

    Article  CAS  Google Scholar 

  • Paal C (1885) Synthese von Thiophen und Pyrrol derivaten. Ber Dtsch Chem Ges 18:367–371

  • Zaharia V, Ignat A, Palibroda N, Ngameni B, Kuete V, Fokunang CN, Moungang ML, Ngadjui BT (2010) Synthesis of some p-toluenesulfonyl-hydrazinothiazoles and hydrazino-bis-thiazoles and their anticancer activity. Eur J Med Chem 45:5080–5085

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One of the authors V. Padmavathi is grateful to Council of Scientific and Industrial Research (CSIR), New Delhi for financial assistance under major research project. One of the authors P. Ramachandra Reddy is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India for the sanction of Senior Research Fellowship (SRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkatapuram Padmavathi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basha, S.S., Ramachandra Reddy, P., Padmaja, A. et al. Synthesis and antimicrobial activity of 3-aroyl-4-heteroaryl pyrroles and pyrazoles. Med Chem Res 24, 954–964 (2015). https://doi.org/10.1007/s00044-014-1169-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1169-8

Keywords

Navigation