Skip to main content
Log in

Pharmacophore modeling, 3DQSAR, and docking-based design of polysubstituted quinolines derivatives as inhibitors of phosphodiesterase 4, and preliminary evaluation of their anti-asthmatic potential

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

3D QSAR models using 3D pharmacophore, CoMFA, and CoMSIA approaches were developed for a series of quinoline derivatives as PDE4 receptor antagonists. Hypogen method was used to engender the 3D pharmacophore model. The top scoring four feature pharmacophore models, Hypo1 contains one hydrogen-bond acceptor, two hydrogen-bond donors, and a hydrophobic feature. Hypo1 was validated using test set, Fischer’s randomization test, and screening of decoy set. CoMFA and CoMSIA models were developed using the alignment obtained by pharmacophore (Hypo1), substructure alignment, and by application of region focusing. Substructure alignment followed by region focusing provided the best CoMFA and CoMSIA models. Based on the results of 3D QSAR studies, some new molecules were designed and evaluated by Docking and Lipinski filters. The designed molecules were synthesized and two top scoring molecules were subjected to preliminary evaluation of their efficacy in treatment of asthma and COPD. The molecules demonstrated efficacy comparable to standard drugs in treatment of asthma and COPD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Alon R, Ley K (2008) Cells on the run: shear-regulated integrin activation in leukocyte rolling and arrest on endothelial cells. Curr Opin Cell Biol 20(5):525–532

    Article  CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (1998) Catalytic domain of human phosphodiesterase 4B2B in complex with a quinoline inhibitor. RCSB Protein Data Bank

  • Castillo E, Beer SD (1947) THE TRACHEAL CHAIN: I. A preparation for the study of antispasmodics with particular reference to bronchodilator drugs. J Pharmacol Exp Ther 90(2):104–110

    CAS  PubMed  Google Scholar 

  • Chakraborti AK, Gopalakrishnan B, Sobhia ME, Malde A (2003a) 3D-QSAR studies of indole derivatives as phosphodiesterase IV inhibitors. Eur J Med Chem 38(11):975–982

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti AK, Gopalakrishnan B, Sobhia ME, Malde A (2003b) 3D-QSAR studies on thieno[3,2-d]pyrimidines as phosphodiesterase IV inhibitors. Bioorg Med Chem Lett 13(8):1403–1408

    Article  CAS  PubMed  Google Scholar 

  • Chakraborti AK, Gopalakrishnan B, Sobhia ME, Malde A (2003c) Comparative molecular field analysis (CoMFA) of phthalazine derivatives as phosphodiesterase IV inhibitors. Bioorg Med Chem Lett 13(15):2473–2479

    Article  CAS  PubMed  Google Scholar 

  • Christensen SB, Torphy TJ (1994) Isozyme-selective phosphodiesterase inhibitors as antiasthmatic agents. In: Beer AJ (ed) Annual reports in medicinal chemistry, vol 29. Academic Press, New York, pp 185–194

    Google Scholar 

  • Cramer RD, Bunce JD, Patterson DE, Frank IE (1988a) Crossvalidation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant Struct-Act Relat 7(1):18–25

    Article  Google Scholar 

  • Cramer RD, Patterson DE, Bunce JD (1988b) Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins. J Am Chem Soc 110(18):5959–5967

    Article  CAS  PubMed  Google Scholar 

  • Crespo MI, Gracia J, Puig C, Vega A, Bou J, Beleta J, Domenech T, Ryder H, Segarra V, Palacios JM (2000) Synthesis and biological evaluation of 2,5-dihydropyrazolo[4,3-c]quinolin-3-ones, a novel series of PDE 4 inhibitors with low emetic potential and antiasthmatic properties. Bioorg Med Chem Lett 10(23):2661–2664

    Article  CAS  PubMed  Google Scholar 

  • Diller DJ, Merz KMJ (2001) High throughput docking for library design and library prioritization. PROTEINS 43(2):113–124

    Article  CAS  PubMed  Google Scholar 

  • Dong X, Zheng W (2008) A new structure-based QSAR method affords both descriptive and predictive models for phosphodiesterase-4 inhibitors. Curr Chem Genomics 6(2):29–39

    Article  Google Scholar 

  • Francis S, Turko IV, Corbin JD (2000) Cyclic nucleotide phosphodiesterases: relating structure and function. Prog Nucleic Acid Res 65(1):1–52

    Article  Google Scholar 

  • Gaurav A, Gautam V, Singh R (2012) Quantitative structure–activity relationship and design of polysubstituted quinoline derivatives as inhibitors of phosphodiesterase 4. Med Chem Res 21(10):3087–3103

    Article  CAS  Google Scholar 

  • Giembycz MA, Dent G (1992) Prospects for selective cyclic nucleotide phosphodiesterase inhibitors in the treatment of bronchial asthma. Clin Exp Allergy 22(3):337–344

    Article  CAS  PubMed  Google Scholar 

  • Gupta SP, Mathur AN, Naggapa AN, Kumar D, Kumaran S (2003) A quantitative structure–activity relationship study on a novel class of calcium-entry blockers: 1-[{4-(aminoalkoxy)phenyl}sulphonyl]indolizines. Eur J Med Chem 38(10):867–873

    Article  CAS  PubMed  Google Scholar 

  • Horowski R, Sastre-y-Herandez M (1985) Clinical effects of neurotropic selective Cyclic AMP phosphodiesterase inhibitor rolipram in depressed patients: global evaluation of the preliminary reports. Curr Ther Res 38:23–29

    Google Scholar 

  • Jain AN (2004) Ligand-based structural hypotheses for virtual screening. J Med Chem 47(4):947–961

    Article  CAS  PubMed  Google Scholar 

  • James RM, Donald PM, John PP (1998) Reaction of sulfoxides with diethylaminosulfur trifluoride. In: Freeman JP (ed) Organic syntheses, vol 9. Wiley, New York, p 446

    Google Scholar 

  • Javorka K, Calkovska A, Mokra D, Tonhajzerova I (2006) Medical physiology. Comenius University, Bratislava

    Google Scholar 

  • Kammer GM (1988) The adenylate cyclase-cAMP-protein kinase A pathway and regulation of the immune response. Immunol Today 9(7–8):222–229

    Article  CAS  PubMed  Google Scholar 

  • Kwong FY, Buchwald SL (2002) A general, efficient, and inexpensive catalyst system for the coupling of aryl iodides and thiols. Org Lett 4(20):3517–3520

    Article  CAS  PubMed  Google Scholar 

  • Kwong FY, Buchwald SL (2003) Mild and efficient copper-catalyzed amination of aryl bromides with primary alkylamines. Org Lett 5(6):793–796

    Article  CAS  PubMed  Google Scholar 

  • Kwong FY, Klapars A, Buchwald SL (2002) Copper-catalyzed coupling of alkylamines and aryl iodides: an efficient system even in an air atmosphere. Org Lett 4(4):581–584

    Article  CAS  PubMed  Google Scholar 

  • Li H, Sutter J, Hoffmann R (2000) HypoGen: an automated system for generating 3D predictive pharmacophore models. In: Güner O (ed) International University Line: biotechnology series, vol 2. International University Line, La Jolla CA, pp 171–189

    Google Scholar 

  • Lindgren F, Geladi P, Rannar S, Wold SJ (1994) Interactive variable selection (IVS) for PLS. Part 1: Theory and algorithms. J Chemom 8(5):349–363

    Article  Google Scholar 

  • Lunniss CJ, Cooper AW, Eldred CD, Kranz M, Lindvall M, Lucas FS, Neu M, Preston AG, Ranshaw LE, Redgrave AJ, Robinson J, Shipley TJ, Solanke YE, Somers DO, Wiseman JO (2009) Quinolines as a novel structural class of potent and selective PDE4 inhibitors: optimisation for oral administration. Bioorg Med Chem Lett 19(5):1380–1385

    Article  CAS  PubMed  Google Scholar 

  • Nicholson CD, Challiss RA, Shahid M (1991) Differential modulation of tissue function and therapeutic potential of selective inhibitors of cyclic nucleotide phosphodiesterase isoenzymes. Trends Pharmacol Sci 12(1):19–27

    Article  CAS  PubMed  Google Scholar 

  • Price CC, Roberts RM (1948) The synthesis of certain substituted quinolines and 5,6- benzoquinolines. In: Blatt A (ed) Organic syntheses, vol 28. Wiley, New York, p 38

    Google Scholar 

  • Price CC, Roberts RM (1955) The synthesis of certain substituted quinolines and 5,6- benzoquinolines, vol 3. Wiley, New York

    Google Scholar 

  • Puurunen J, Lucke C, Schwabe U (1978) Effect of the phosphodiesterase inhibitor 4-(3-cyclopentyloxy-4-methoxyphenyl)-2-pyrrolidone (ZK 62711) on gastric secretion and gastric mucosal cyclic AMP. Naunyn-Schmiedeberg’s Arch Pharmacol 304(1):69–75

    Article  CAS  Google Scholar 

  • Robinson GA, Butcher RW, Sutherland EW (1968) Cyclic AMP. Ann Rev Biochem 37:149–174

    Article  Google Scholar 

  • Sulea T, Oprea TI, Muresan S, Chan SL (1997) A different method for steric field evaluation in CoMFA improves model robustness. J Chem Inf Comput Sci 37(6):1162–1170

    Article  CAS  Google Scholar 

  • The OECD 423 Guideline for Testing of Chemicals Acute Oral Toxicity—acute toxic class method (2001). Paris

  • Torphy TJ, Undem BJ (1991) Phosphodiesterase inhibitors: new opportunities for the treatment of asthma. Thorax 46(7):512–523

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uhlig S (1998) The isolated perfused lung. In: Uhlig S, Taylor AE (eds) Methods in pulmonary research. Birkhäuser, Basel, pp 29–35

    Chapter  Google Scholar 

  • Vong R, Geladi P, Wold S, Esbensen KJ (1988) Source contributions to ambient aerosol calculated by discriminat partial least squares regression (PLS). J Chemom 2(4):281–296

    Article  CAS  Google Scholar 

  • Walter AJ, Gould RG (1939) The synthesis of certain substituted quinolines and 5,6- benzoquinolines. J Am Chem Soc 61(10):2890–2895

    Article  Google Scholar 

  • Woodrow MD, Ballantine SP, Barker MD, Clarke BJ, Dawson J, Dean TW, Delves CJ, Evans B, Gough SL, Guntrip SB, Holman S, Holmes DS, Kranz M, Lindvaal MK, Lucas FS, Neu M, Ranshaw LE, Solanke YE, Somers DO, Ward P, Wiseman JO (2009) Quinolines as a novel structural class of potent and selective PDE4 inhibitors. Optimisation for inhaled administration. Bioorg Med Chem Lett 19(17):5261–5265

    Article  CAS  PubMed  Google Scholar 

  • Zeller E, Stief HJ, Pflug B, Satre Y, Herandez M (1984) Results of a phase II study of the antidepressant effect of Rolipram. Pharmacopsychiatry 17(6):188–190

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz DR (2008) Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol 10(9):1062–1068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Dr. Sarvesh Paliwal, Head, Department of Pharmacy, Banasthali Vidyapeeth, Rajasthan, India for providing access to Discovery Studio program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Gaurav.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaurav, A., Singh, R. Pharmacophore modeling, 3DQSAR, and docking-based design of polysubstituted quinolines derivatives as inhibitors of phosphodiesterase 4, and preliminary evaluation of their anti-asthmatic potential. Med Chem Res 23, 5008–5030 (2014). https://doi.org/10.1007/s00044-014-1048-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-014-1048-3

Keywords

Navigation