Skip to main content

Advertisement

Log in

Ab initio modeling of a potent isophthalamide-based BACE-1 inhibitor: amino acid decomposition analysis

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

β-Secretase or β-site amyloid precursor protein cleaving enzyme (BACE-1) is a membrane-associated aspartyl protease that catalyzes the first step in the formation of amyloid β plaques responsible for Alzheimer’s disease (AD). β-Secretase has been considered as a striking therapeutic target for AD. Recently, several attempts have been focused on the development of inhibitors of this key protease. Among small molecules, scaffolds based on isophthalamide derivatives have been reported as potent non-peptidic BACE-1 inhibitors. In the present study, interactions of a 5-(N-methylmethan-4-ylsulfonamido) isophthalamide-based scaffold with BACE-1 active site residues have been evaluated via the functional B3LYP in association with split valence basis set using polarization functions (Def2-SVP). The complex ligand–receptor system including N1-(4-(cyclopropylamino)-3-hydroxy-1-phenylbutan-2-yl)-5-(N-methylmethan-4-ylsulfonamido)-N3(1-phenylethyl) isophthalamide (5HA) and 18 amino acids constructing BACE-1 active site exhibited H-bonds, π–π stacking, and Van der Waals interactions associated with total binding energy of −268.34 kcal/mol at B3LYP/Def2-SVP level. The outcomes of conformational analysis postulated that the studied isophthalamide-based structure might not necessarily interact with the active site of BACE-1 in its optimum geometric conformation.

Graphical Abstract

Amino acid decomposition analysis on complex ligand–receptor system comprising N1-(4-(cyclopropylamino)-3-hydroxy-1-phenylbutan-2-yl)-5-(N-methylmethan-4-ylsulfonamido)-N3(1 phenylethyl) isophthalamide and BACE-1 active site was performed using B3LYP method in association with split valence basis set using polarization functions (Def2-SVP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Block JH, Beale JM (2004) Wilson and Gisvold’s textbook of organic medicinal and pharmaceutical chemistry. Lippincott Williams and Wilkins, Philadelphia

    Google Scholar 

  • Coburn CA, Stachel SJ, Jones KG et al (2006) BACE-1 inhibition by a series of w[CH2NH] reduced amide isosteres. Bioorg Med Chem Lett 16:3635–3638

    Article  PubMed  CAS  Google Scholar 

  • Ghosh AK, Shin D, Downs D, Koelsch G, Lin X, Ermolieff J, Tang J (2000) Design of potent inhibitors for human brain memapsin 2 (-secretase). J Am Chem Soc 122(14):3522–3523

    Article  CAS  Google Scholar 

  • Ghosh AK, Kumaragurubaran N, Hong L et al (2007) Design, synthesis, and X-ray structure of potent memapsin 2 (â-secretase) inhibitors with isophthalamide derivatives as the P2–P3-ligands. J Med Chem 50:2399–2407

    Article  PubMed  CAS  Google Scholar 

  • Hamada Y, Abdel-Rahman H, Yamani A et al (2008) BACE1 inhibitors: optimization by replacing the residue with non-acidic moiety. Bioorg Med Chem Lett 18(5):1649–1653

    Article  PubMed  CAS  Google Scholar 

  • Hanessian S, Yun H, Hou Y, Tintelnot-Blomley M (2005) Stereoselective synthesis of constrained azacyclic hydroxyethylene isosteres as aspartic protease inhibitors: dipolar cycloaddition and related methodologies toward branched pyrrolidine and pyrrolidinone carboxylic acids. J Org Chem 70(17):6746–6756

    Article  PubMed  CAS  Google Scholar 

  • Hevener KE, Zhao W, Ball DM, Babaoglu K, Qi J, White SW, Lee RE (2009) Validation of molecular docking programs for virtual screening against Dihydropteroate synthase. J Chem Inf Model 49(2):444–460

    Article  PubMed  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:34–38

    Article  Google Scholar 

  • Kortum SW, Benson TE, Bienkowski MJ et al (2007) Potent and selective isophthalamide S2 hydroxyethylamine inhibitors of BACE1. Bioorg Med Chem Lett 17:3378–3383

    Article  PubMed  CAS  Google Scholar 

  • Kurz A, Perneczky R (2011) Novel insights for the treatment of Alzheimer’s disease. Prog Neuro-psychopharmacol Biol Psychiatry 35(2):373–379

    Article  CAS  Google Scholar 

  • Levine IN (2008) Physical chemistry. McGraw-Hill, New York

    Google Scholar 

  • Luo Y, Bolon B, Kahn S et al (2001) Mice deficient in BACE1, the Alzheimer’s b-secretase, have normal phenotype and abolished b-amyloid generation. Nat Neurosci 4:231–232

    Article  PubMed  CAS  Google Scholar 

  • Madden J, Dod JR, Godemann R et al (2010) Fragment-based discovery and optimization of BACE1 inhibitors. Bioorg Med Chem Lett 20:5329–5333

    Article  PubMed  CAS  Google Scholar 

  • Malamas MS, Erdei J, Gunawan I et al (2010) Design and synthesis of 5,50-disubstituted aminohydantoins as potent and selective human β-secretase (BACE1) inhibitors. J Med Chem 53:1146–1158

    Article  PubMed  CAS  Google Scholar 

  • Manzenrieder F, Frank AO, Huber T, Dorner-Ciossek C, Kessler H (2007) Synthesis and biological evaluation of phosphino dipeptide isostere inhibitor of human [beta]-secretase (BACE1). Bioorg Med Chem 15(12):4136–4143

    Article  PubMed  CAS  Google Scholar 

  • McGovern SL, Shoichet BK (2003) Information decay in molecular docking screens against holo, apo, and modeled conformations of enzymes. J Med Chem 46(14):2895–2907

    Article  PubMed  CAS  Google Scholar 

  • McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease. Neurology 34(7):939

    Article  PubMed  CAS  Google Scholar 

  • Mulliken RS (1955) Electronic population analysis on LCAO MO molecular wave functions. IV. Bonding and antibonding in LCAO and valence bond theories. J Chem Phys 23:2343

    Article  CAS  Google Scholar 

  • Neese F (2011) ORCA—an ab initio, density functional and semiempirical program package, version 2.8.0. University of Bonn, Bonn

    Google Scholar 

  • Probst GD, Bowers S, Sealy JM et al (2010) Design and synthesis of hydroxyethylamine (HEA) BACE-1 inhibitors: structure–activity relationship of the aryl region. Bioorg Med Chem Lett 20:6034–6039

    Article  PubMed  CAS  Google Scholar 

  • Querfurth HW, LaFerla FM (2010) Alzheimer’s disease. N Engl J Med 362(4):329–344

    Article  PubMed  CAS  Google Scholar 

  • Rajapakse HA, Nantermet PG, Selnick HG et al (2006) Discovery of oxadiazoyl tertiary carbinamine inhibitors of β-secretase (BACE-1). J Med Chem 49:7270–7273

    Article  PubMed  CAS  Google Scholar 

  • Roberds SL, Anderson J, Basi G et al (2001) BACE knockout mice are healthy despite lacking the primary -secretase activity in brain: implications for Alzheimer’s disease therapeutics. Hum Mol Genet 10(12):1317–1324

    Article  PubMed  CAS  Google Scholar 

  • Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J Chem Phys 97(4):2571–2577

    Article  Google Scholar 

  • Selkoe DJ (2000) Toward a comprehensive theory for Alzheimer’s disease. Hypothesis: Alzheimer’s disease is caused by the cerebral accumulation and cytotoxicity of amyloid beta-protein. Ann NY Acad Sci 924:17–25

    Article  PubMed  CAS  Google Scholar 

  • Selkoe DJ (2008) Soluble oligomers of the amyloid [beta]-protein impair synaptic plasticity and behavior. Behav Brain Res 192(1):106–113

    Article  PubMed  CAS  Google Scholar 

  • Silvestri R (2009) Boom in the development of non-peptidic b-secretase (BACE1) inhibitors for the treatment of Alzheimer’s disease. Med Res Rev 29(2):295–338

    Article  PubMed  CAS  Google Scholar 

  • Stachel SJ, Coburn CA, Steele TG et al (2004) Structure-based design of potent and selective cell-permeable inhibitors of human beta-secretase (BACE-1). J Med Chem 47(26):6447–6450

    Article  PubMed  CAS  Google Scholar 

  • Stachel SJ, Coburn CA, Steele TG et al (2006) Conformationally biased P3 amide replacements of [beta]-secretase inhibitors. Bioorg Med Chem Lett 16(3):641–644

    Article  PubMed  CAS  Google Scholar 

  • Vassar R (2002) [beta]-Secretase (BACE) as a drug target for Alzheimer’s disease. Adv Drug Deliv Rev 54(12):1589–1602

    Article  PubMed  CAS  Google Scholar 

  • Wallace AC, Laskowski RA, Thornton JM (1995) LIGPLOT—a program to generate schematic diagrams of protein ligand interactions. Protein Eng 8:27–134

    Article  Google Scholar 

  • Wångsell F, Gustafsson K, Kvarnström I et al (2010) Synthesis of potent BACE-1 inhibitors incorporating a hydroxyethylene isostere as central core. Eur J Med Chem 45:870–882

    Article  PubMed  Google Scholar 

  • Xiao K, Li X, Li J et al (2006) Design, synthesis, and evaluation of Leu* Ala hydroxyethylene-based non-peptide [beta]-secretase (BACE) inhibitors. Bioorg Med Chem 14(13):4535–4551

    Article  PubMed  CAS  Google Scholar 

  • Xiong YZ, Chen PY (2008) ONIOM DFT/PM3 calculation on the interaction between STI-571 and abelson tyrosine kinase. J Mol Model 14(11):1083–1086

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Financial supports of this Project by Research Council of Shiraz University of Medical Sciences are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Miri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razzaghi-Asl, N., Ebadi, A., Edraki, N. et al. Ab initio modeling of a potent isophthalamide-based BACE-1 inhibitor: amino acid decomposition analysis. Med Chem Res 22, 3259–3269 (2013). https://doi.org/10.1007/s00044-012-0277-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-012-0277-6

Keywords

Navigation