Skip to main content
Log in

Design, synthesis, and anticonvulsant screening of some substituted piperazine and aniline derivatives of 5-phenyl-oxazolidin-2,4-diones and 5,5-diphenylimidazolidin-2,4 diones

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Substituted piperazine and aniline derivatives of oxazolidin-2,4-diones and imidazolidin-2,4-diones were synthesized by N3 alkylation and screened for their anticonvulsant activity by the maximal electroshock (MES) test, and their neurotoxicity was evaluated by the rotarod test. Among all the synthesized derivatives, compounds 4b, 6c, 6d, 10b, 11a, 11b, and 11d were found to exhibit maximum seizure protection in MES test and were devoid of any neurotoxic effects. Furthermore, the functional activity of these compounds were evaluated in vivo for 5-HT1A receptor affinity by using rectal body temperature and lower lip retraction in rats, while head twitch response in mice was performed for the determination of probable affinity toward 5-HT2A receptor. The results of these tests demonstrated that compounds 4b, 6c, 6d, 10b, 11a, 11b, and 11d exhibited 5-HT1A (pre- and postsynaptic) agonist/antagonist features whereas compounds 11a and 11b exhibited antagonist action for 5-HT2A receptor. From the in vivo studies it was observed that a majority of aniline derivatives (6c, 6d, 11a, 11b, 11d) were found to be more active as compared to their bulky piperazine congeners (4b, 10b). Thus, the overall reduction in the bulkiness of the derivatives without compromising the lipophilicity is well appreciated for providing insights into the structural requirements necessary for development of new effective molecules having anticonvulsant effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Scheme 2

Similar content being viewed by others

References

  • Albuquerque JFC, Rocha Filho JA, Brandao SSF, Lima MCA, Ximenes EA, Galdino SL, Pitta IR, Chantegrel J, Perrissin M, Luu-Duc C (1999) Synthesis and antimicrobial activity of substituted imidazolidinediones and thioxoimidazolidinones antiarrythmic. Il Farmaco 54:77–82

    Article  PubMed  CAS  Google Scholar 

  • Baulac M (2003) Rational conversion from antiepileptic polytherapy to monotherapy. Epileptic Disord 5:125–132

    PubMed  Google Scholar 

  • Berendsen HH, Jenck F, Broekkamp CL (1989) Selective activation of 5HT1A receptors induces lower lip retraction in the rat. Pharmacol Biochem Behav 33:821–827

    Article  PubMed  CAS  Google Scholar 

  • Biltz H (1908) Constitution of the products of the interaction of substituted carbamides on Benzil and certain new methods for the preparation of 5,5-diphenylhydantoin. Chem Ber 41:1379

    Article  CAS  Google Scholar 

  • Byrtus H, Pawłowski M, Czopek A, Bojarski AJ, Duszyńska B, Nowak G, Kłodzinska A, Tatarczyńska E, Wesołowska A, Chojnacka-Wojcik E (2005) Synthesis and 5-HT1A, 5-HT2A receptor activity of new beta-tetralonohydantoins. Eur J Med Chem 40:820–829

    Article  PubMed  CAS  Google Scholar 

  • Cheng XC, Hou JJ, Wang RL, Dong WL (2010) 3-Hydroxymethyl-1-(4-methoxyphenyl) imidazolidine-2,4-dione Acta Cryst. E66

  • Darmani NA, Martin BR, Pandey U, Glennon RA (1990) Do functional relationships exist between 5-HT1A and 5-HT2 receptors? Pharmacol Biochem Behav 36:901–906

    Article  PubMed  CAS  Google Scholar 

  • Dolezel J, Hirsova P, Opletalova V, Dohnal J, Marcela V, Kunes J, Jampilek J (2009) Rhodanineacetic acid derivatives as potential drugs: preparation, hydrophobic properties and antifungal activity of (5-arylalkylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl) acetic acids. Molecules 14:4197–4212

    Article  PubMed  CAS  Google Scholar 

  • Dow RL, Bechle BM, Chou TT, Clark DA, Hulin B, Stevenson WR (1991) Benzyloxazolidine-2,4-diones as potent hypoglycemic agents. J Med Chem 34:1538–1544

    Article  PubMed  CAS  Google Scholar 

  • Dunnavant WR, James FL (1956) Molecular rearrangements. I. The base-catalyzed condensation of benzil with urea. J Am Chem Soc 78:2740–2743

    Article  CAS  Google Scholar 

  • Dursun SM, Handley SL (1996) Similarities in the pharmacology of spontaneous and DOI-induced head-shakes suggest 5HT1A receptors are active under physiological conditions. Psychopharmacology 128:198–205

    Article  PubMed  CAS  Google Scholar 

  • Filakovszky J, Gerber K, Bagdy G (1999) A serotonin-1A receptor agonist and an N-methyl-aspartate receptor antagonist oppose each others effects in a genetic rat epilepsy model. Neurosci Lett 261:89–92

    Article  PubMed  CAS  Google Scholar 

  • Flosi WJ, DeGoey DA, Grampovnik DJ, Chen H, Klein LL, Dekhtyar T, Masse S, Marsh KC, Mo HM, Kemp D (2006) Discovery of imidazolidine-2,4-dione-linked HIV protease inhibitors with activity against lopinavir-resistant mutant HIV. Bioorg Med Chem 14:6695–6712

    Article  PubMed  CAS  Google Scholar 

  • Graf M, Jakus R, Kantor S, Levay G, Bagdy G (2004) Selective 5-HT1A and 5-HT7 antagonists decrease epileptic activity in the WAG/Rij rat model of absence epilepsy. Neurosci Lett 359:45–48

    Article  PubMed  CAS  Google Scholar 

  • Jurczyk S, Kołaczkowski M, Maryniak E, Zajdel P, Pawłowski M, Tatarczyńska E, Kłodzińska A, Chojnacka-Wójcik E, Bojarski AJ, Charakchieva-Minol S, Duszyńska B, Nowak G, Maciag D (2004) New arylpiperazine 5-HT1A receptor ligands containing the pyrimido[2,1-f]purine fragment: synthesis, in vitro, and in vivo pharmacological evaluation. J Med Chem 47:2659–2666

    Article  PubMed  CAS  Google Scholar 

  • Krall RL, Penry JK, White BG, Kupferberg HJ, Swinyar EA (1978) Antiepileptic drug development: II. Anticovulsant drug screening. Epilepsia 19:409–428

    Article  PubMed  CAS  Google Scholar 

  • Kupferberg HJ, Stables JP (1998) In: Stefan H, Kramer G, Mamoli B (eds) Challenge epilepsy-new anticonvulsant drugs. Blackwell Science, Boston, pp 7–29

    Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 46:3–26

    Article  CAS  Google Scholar 

  • Livingston S, Boks LL (1955) Use of the dione drugs (propazone, tridione, paradione, dimedione and malidone) in the treatment of epilepsy of children. N Engl J Med 253:138–143

    Article  PubMed  CAS  Google Scholar 

  • Maryland F (1943) The chemistry of the hydantoin. Chem Rev 46:403–470

    Google Scholar 

  • Matsukura M, Daiku Y, Ueda K, Tanaka S, Igarashi T, Minami N (1992) Synthesis and antiarrhythmic activity of 2,2-dialkyl-1′-(N-substituted aminoalkyl)-spiro-(chroman-4,4′-imidazolidine)-2′,5′-diones. Chem Pharm Bull 40:1823–1827

    Article  PubMed  CAS  Google Scholar 

  • Menezes EHC, Góes AJS, Diu MBS, Galdino SL, Pitta IR, Luu-Duc C (1992) Synthesis and structure of substituted benzyl imidazolidinedione and chlorobenzyl thiazolidine-dione compounds. Pharmazie 46:457–458

    Google Scholar 

  • Momose Y, Maekawa T, Yamano T, Kawada M, Odaka H, Ikeda H, Sohda T (2002) Novel 5-substituted 2,4-thiazolidinedione and 2,4-oxazolidinedione derivatives as insulin sensitizers with antidiabetic activities. J Med Chem 45:1518–1534

    Article  PubMed  CAS  Google Scholar 

  • Mulwad VV, Langi BP, Chaskar AC (2011) Synthesis of novel biologically active heterocyclic compounds from 2-oxo-2h-benzopyran-6-yl-imidazolidine. Acta Pol Pharm Drug Res 68:39–47

    CAS  Google Scholar 

  • Pastalos PN (1999) Antiepileptic drugs: newly licensed and under development. IDrugs 3:549–562

    Google Scholar 

  • Pekala E, Stadnicka K, Broda A, Zygmunt M, Filipek B, Kononowicz KK (2005) Synthesis, structure–activity relationship of some new anti-arrhythmic 5-arylidene imidazolidine-2,4-dione derivatives. Eur J Med Chem 40:259–269

    Article  PubMed  CAS  Google Scholar 

  • Przegaliński E, Baran L, Siwanowicz J (1994) Role of 5-hydroxytryptamine receptor subtypes in the 1-[3-(trifluoromethyl)phenyl] piperazine-induced increase in threshold for maximal electroconvulsions in mice. Epilepsia 35:889–894

    Article  PubMed  Google Scholar 

  • Rodgers TR, La Montagne MP, Markovac A, Ash AB (1977) Hydantoins as antitumor agents). J Med Chem 20(4):591–594

    Article  PubMed  CAS  Google Scholar 

  • Rogawski MA (2006) Molecular targets versus models for new antiepileptic drug discovery. Epilepsy Res 68:22–28

    Article  PubMed  Google Scholar 

  • Salgado-Commissariat D, Alkadhi KA (1996) Effects of serotonin on induced epileptiform activity in CA1 pyramidal neurons of genetically epilepsy prone rats. Brain Res 743:212–216

    Article  PubMed  CAS  Google Scholar 

  • Schreiber R, Brocco M, Audinot V, Gobert A, Veiga S, Millan MJ (1995) (1-(2,5-Dimethoxy-4 iodophenyl)-2-aminopropane)-induced head-twitches in the rat are mediated by 5-hydroxytryptamine (5-HT) 2A receptors: modulation by novel 5-HT2A/2C antagonists, D1 antagonists and 5-HT1A agonists. J Pharmacol Exp Ther 273:101–112

    PubMed  CAS  Google Scholar 

  • Sengupta D, Verma D, Naik PK (2007) Docking mode of delvardine and its analogues into the p66 domain of HIV-1 reverse transcriptase: screening using molecular mechanics generalized born/surface area and absorption, distribution, metabolism and excretion properties. J Biosci 32:1307–1316

    Article  PubMed  CAS  Google Scholar 

  • Shankarananth V, Ranganayakulu D, Sridhar C, Rajasekhar KK, Srijanya Ch, Swathi P (2010) Synthesis and antimicrobial evaluation of some oxazolidine dione derivatives. J Pharm Res 3:2447–2449

    CAS  Google Scholar 

  • Shmidt MS, Reverdito AM, Kremenchuzky L, Perillo IA, Blanco MM (2008) Simple and efficient microwave assisted N-alkylation of isatin. Molecules 13:831–840

    Article  PubMed  CAS  Google Scholar 

  • Stables JP, Kupferberg HJ (1997a) In: Avanzini G, Tanganelli P, Avoli M (eds) Molecular and cellular targets for antiepileptic drugs. John Libbey & Company, London, pp 191–198

    Google Scholar 

  • Stables JP, Kupferberg HJ (1997b) The NIH anticonvulsant drug development (ADD) program: preclinical anticonvulsant screening project. In: Avanzini G, Tanganelli P, Avoli M (eds) Molecular and cellular targets for antiepileptic drugs. John Libbey & Company Ltd, London, England, pp 4–17

    Google Scholar 

  • Ucar H, Van der Poorten K, Spampinato S, Cacciaguerra S, Depovere P, Stables JP, Isa M, Masereel B, Delarge J, Poupaert JH (1998) Synthesis and anticonvulsant activity of 2(3H)-benzoxazolone and 2(3H)-benzothiazolone derivatives. J Med Chem 41:1138–1145

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial assistance given by University Grants Commission (UGC), New Delhi for the grant of senior research fellowship to Ms. Meenakshi Dhanawat.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Shrivastava.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dhanawat, M., Banerjee, A.G. & Shrivastava, S.K. Design, synthesis, and anticonvulsant screening of some substituted piperazine and aniline derivatives of 5-phenyl-oxazolidin-2,4-diones and 5,5-diphenylimidazolidin-2,4 diones. Med Chem Res 21, 2807–2822 (2012). https://doi.org/10.1007/s00044-011-9805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-011-9805-z

Keywords

Navigation