Skip to main content

Advertisement

Log in

Modifications to five-substituted 3,3-diethyl-4,5-dihydro-2(3H)-furanones en route to novel muscarinic receptor ligands

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Lead lactone-based ligands with modest affinity for muscarinic receptors were modified based on structure–activity relationship data in the literature to provide a new series of 5-substituted 4,5-dihydro-2(3H)-furanones. The modifications included the addition of various nitrogen-containing heterocycles attached to substituted and unsubstituted aromatic rings. The target compounds were synthesized in modest yields and evaluated in preliminary muscarinic binding assays. A lactone-based ligand containing a diphenylmethylpiperazine moiety was identified as a nonselective muscarinic ligand with IC50 of 340 nM. The design of future ligands will be based, in part, on structure–activity data reported herein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Scheme 3
Scheme 4

Similar content being viewed by others

References

  • Abrams P, Andersson KE, Buccafusco JJ, Chapple C, Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ, Wein AJ (2006) Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol 148:565–578

    Article  PubMed  CAS  Google Scholar 

  • Ahungena A, Canney DJ (1996) Synthesis and biological evaluation of aminomethyl/amidomethyl derivatives of an anticonvulsant γ-butyrolactone. Med Chem Res 6(9):618–634

    CAS  Google Scholar 

  • Ahungena A, Gabriel JL, Canney DJ (2003) Synthesis and evaluation of 5-substituted derivatives of 4,5-dihydro-3,3-diethyl-2(3H)-furanone as subtype-selective muscarinic leads. Med Chem Res 12(9):481–511

    CAS  Google Scholar 

  • Beers WH, Reich E (1970) Structure and activity of acetylcholine. Nature 228:917–922

    Article  PubMed  CAS  Google Scholar 

  • Burstein ES, Spalding TA, Brann MR (1998) Structure/function relationships of a G-protein coupling pocket formed by the third intracellular loop of m5 muscarinic receptor. Biochemistry 37:4052–4058

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Bymaster FP, Ward J, Delapp N (2000) Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 43:4333–4353

    Article  PubMed  CAS  Google Scholar 

  • Johren K, Holtje HD (2002) A model of human M2 muscarinic acetylcholine receptor. J Comput Aided Mol Des 16:795–801

    Article  PubMed  Google Scholar 

  • Kaiser C, Spagnuolo CJ, Adams TC, Audia VH, Dupont AC, Hatoum H, Lowe VC, Prosser JC, Sturm BL, Noronha-Blob L (1992) Synthesis and antimuscarinic properties of some N-substituted 5-(aminomethyl)-3,3-diphenyl-2(3H)-furanones. J Med Chem 35:4415–4424

    Article  PubMed  CAS  Google Scholar 

  • Koch HJ, Haas S, Jurgens T (2005) On the physiological relevance of muscarinic acetylcholine receptors in Alzheimer’s disease. Curr Med Chem 12:2915–2921

    Article  PubMed  CAS  Google Scholar 

  • Kozlowski JA, Zhou G, Jayaram RT, Lin S, McCombie SW, Ruperto VB, Duffy RA, McQuade RA, Crosby G, Taylor LA, Billard W, Binch H, Lachowicz JE (2002) Substituted 2-(R)-methyl piperazines as muscarinic M2 selective ligands. Bioorg Med Chem Lett 12:791–794

    Article  PubMed  CAS  Google Scholar 

  • Lewis LM, Sheffler D, Williams R, Bridges TM, Kennedy JP, Brogan JT, Mulder MJ, Williams L, Nalywajko NT, Niswender CM, Weaver CD, Conn PJ, Lindsley CW (2008) Synthesis and SAR of selective muscarinic acetylcholine receptor subtype 1 (M1 mAChR) antagonist. Bioorg Med Chem Lett 18:885–890

    Article  PubMed  Google Scholar 

  • Marriott DP, Dougall IG, Meghani P, Liu YJ, Flower DR (1999) Lead generation using pharmacophore mapping and three-dimensional database searching: application to muscarinic M3 receptor antagonists. J Med Chem 42:3210–3216

    Article  PubMed  CAS  Google Scholar 

  • Nordvall G, Hacksell U (1993) Binding site modeling of muscarinic m1 receptor: a combination of homology-based and indirect approaches. J Med Chem 36:967–976

    Article  PubMed  CAS  Google Scholar 

  • Ogino Y, Ohtake N, Kobayashi K, Kimura T, Fujikawa T, Hasegawa T, Noguchi K, Mase T (2003) Muscarinic M3 receptor antagonists with (2R)-2[1R-3,3-difluorocyclopentyl]-2-hydroxyphenylacetamide structures. Part 2. Bioorg Med Chem Lett 13:2167–2172

    Article  PubMed  CAS  Google Scholar 

  • Orjales A, Bordell M, Rubio V (1995) Synthesis and structure–activity relationship of new piperidinyl and piperazinyl derivatives as antiallergics. J Heterocycl Chem 32:707–718

    CAS  Google Scholar 

  • Ostopovici L, Mracec M, Mracec M, Borota A (2007) Exploring the binding site of human muscarinic M3 receptor: homology modeling and docking study. Int J Quantum Chem 107:1794–1802

    Article  CAS  Google Scholar 

  • Pedretti A, Vistoli G, Marconi C, Testa B (2006) Muscarinic receptors: a comparative analysis of structural features and binding modes through homology modelling and molecular docking. Chem Biodivers 3:481–501

    Article  PubMed  CAS  Google Scholar 

  • Peng JY, Vaidehi N, Hall SE, Goddard WA (2006) The predicted 3D structures of human M1 muscarinic acetylcholine receptor with agonist or antagonist bound. ChemMedChem 1:878–890

    Article  PubMed  CAS  Google Scholar 

  • Peretto I, Forlani R, Fossati G, Giardina G, Giardini A, Guala M, Porta EL, Petrillo P, Radaelli S, Radice L, Raveglia LF, Santoro E, Scudellaro R, Scarpitta F, Bigogno C, Misiano P, Dondio GM, Rizzi A, Armani E, Amari G, Civelli M, Villetti G, Patacchini R, Bergamaschi M, Delcanale M, Salcedo C, Fernandez AG, Imbimbo BP (2007) Discovery of diaryl imidazolidin-2-one derivatives, a novel class of muscarinic M3 selective antagonists (part 1). J Med Chem 50:1571–1583

    Article  PubMed  CAS  Google Scholar 

  • Richards MH (1990) Rat hippocampal muscarinic autoreceptors are similar to the M2 (cardiac) subtype: comparison with hippocampal M1, atrial M2 and ileal M3 receptors. Br J Pharmacol 99:753–761

    PubMed  CAS  Google Scholar 

  • Shapiro G, Floersheim P, Boelsterli J, Bolliger G, Gammenthaler H, Gmelin G, Supavilai P, Walkinshaw M (1992) Muscarinic activity of thiolactone, lactam, lactol and thiolactol analogues of pilocarpine and a hypothetical model for the binding of agonists to the m1 receptor. J Med Chem 35:15–27

    Article  PubMed  CAS  Google Scholar 

  • Vistoli G, Pedretti A, Dei S, Scapecchi S, Marconi C, Romanelli MN (2008) Docking analyses on human muscarinic receptors: unveiling the subtypes pecularities in agonists binding. Bioorg Med Chem 16:3049–3058

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  PubMed  CAS  Google Scholar 

  • Zhao C (2001) Design, synthesis and evaluation of two-substituted quinuclidines: ligands for nicotinic acetylcholine receptors. Dissertation

Download references

Acknowledgments

The authors are grateful to Temple University (D. J. C.; Grant-in-Aid of Research) and the Dean’s office, Temple University School of Pharmacy, for generous financial support and to Dr. Magid Abou-Gharbia and Rogelio Martinez (Moulder Center for Drug Discovery Research) for access to instrumentation and helpful discussions regarding this work. R. R. B is thankful to Dr. Schafmeister/Kavita Akula for providing the LC–MS data for test compounds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Canney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhandare, R.R., Canney, D.J. Modifications to five-substituted 3,3-diethyl-4,5-dihydro-2(3H)-furanones en route to novel muscarinic receptor ligands. Med Chem Res 20, 558–565 (2011). https://doi.org/10.1007/s00044-010-9349-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-010-9349-7

Keywords

Navigation