Skip to main content

Advertisement

Log in

Non-toxic inhibition of HIV-1 replication with silver–copper nanoparticles

  • Original Research
  • Published:
Medicinal Chemistry Research Aims and scope Submit manuscript

Abstract

Cu and Ag–Cu mixed alloy nanoparticles displayed significant inhibition to HIV-1 replication with limited toxicity to human cells at relatively low concentrations of metal. A previous study (Elechiguerra et al. in J Nanobiotechnol 3:6–16, 2005) suggested a size-specific Ag nanoparticle can be tailored to block or damage the glycoprotein (gp) 120/gp41 spike or, more specifically, the invariant epitope at the gp120 binding site. Two different protocols were employed to test whether nanoparticles block entry of HIV-1, and in both instances the nanoparticles acted at some point other than initial binding. This work shows that Ag, Cu, and Ag–Cu mixed alloy metals display a chemically dependent inactivation of the target virus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Becker RO, Spadaro JA (1978) Treatment of orthopaedic infections with electrically generated silver ions. J Bone Joint Surg 60(A):871–881

    CAS  PubMed  Google Scholar 

  • Borkow G, Gabbay J (2004) Putting copper into action: copper-impregnated products with potent biocidal activities. FASEB J 18:1728–1730

    CAS  PubMed  Google Scholar 

  • Chan DC, Kim PS (1998) HIV entry and its inhibition. Cell 93:681–684

    Article  CAS  PubMed  Google Scholar 

  • Chang T-W, Weinstein L (1975) In vitro activity of silver sulfadiazine against Herpesvirus hominis. J Infect Dis 132(1):79–81

    CAS  Google Scholar 

  • Chithrani B, Ghazani A, Chan W (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano letters 6(4):662–668

    Article  CAS  PubMed  Google Scholar 

  • Coyle B, Kavanagh K, McCann M, Devereux M, Geraghty M (2003) Mode of anti-fungal activity of 1,10-phenanthroline and its Cu(II), Mn(II) and Ag(I) complexes. Biometals 16:321–329

    Article  CAS  PubMed  Google Scholar 

  • Davies RL, Etris SF (1997) The development and functions of silver in water purification and disease control. Catal Today 36:107–114

    Article  CAS  Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6–16

    Article  Google Scholar 

  • Herbeuval JP, Grivel JC, Boasso A, Hardy AW, Chougnet C, Dolan MJ, Yagita H, Lifson JD, Shearer GM (2005a) CD4 + T-cell death induced by infectious and noninfectious HIV-1: role of type 1 interferon-dependent, TRAIL/DR5-mediated apoptosis. Blood 106:3524–3531

    Article  CAS  PubMed  Google Scholar 

  • Herbeuval JP, Hardy AW, Boasso A, Anderson SA, Dolan MJ, Dy M, Shearer GM (2005b) Regulation of TNF-related apoptosis-inducing ligand on primary CD4(+) T cells by HIV-1: role of type IIFN-producing plasmacytoid dendritic cells. Proc Natl Acad Sci USA 102:13974–13979

    Article  CAS  PubMed  Google Scholar 

  • Herbeuval JP, Nilsson J, Boasso A, Hardy AW, Kruhlak MJ, Anderson SA, Dolan MJ, Dy M, Andersson J, Shearer GM (2006) Differential expression of IFN-alpha and TRAIL/DR5 in lymphoid tissue of progressor versus nonprogressor HIV-1-infected patients. Proc Natl Acad Sci USA 103:7000–7005

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Tang M, Zhang MY, Majeed S, Montabana E, Stanfield RL, Dimitrov DS, Korber B, Sodroski J, Wilson IA, Wyatt R, Kwong PD (2005) Structure of a V3-containing HIV-1 gp120 core. Science 310:1025–1028

    Article  CAS  PubMed  Google Scholar 

  • Jiang H, Moon K-S, Wong CP (2005) Synthesis of Ag–Cu alloy nanoparticles for lead-free interconnect materials. In: Proceedings of the international symposium on advanced packaging materials: processes, properties and interfaces, pp 173–177

  • Kurihara K, Rockstuhi C, Nakano T, Arai T, Tominaga J (2005) The size control of silver nano-particles in SiO2 matrix film. Nanotechnology 16:1565–1568

    Article  CAS  Google Scholar 

  • Mastro MA, Holm RT, Eddy CR Jr, Kim J (2008) Electromagnetic propagation in nanostructures. J Ceram Process Res 9:1–5

    Google Scholar 

  • Mitun NI, Lagutkin NA, Chapurina LF, Zubairov MM, Petracheva TK, Arkhipova TN (1983) Investigation of the antiviral activity of copper(II) salts with α-amino acids. Pharm Chem J 17:351–352

    Article  Google Scholar 

  • Münch J, Ständker L, Adermann K, Schulz A, Schindler M, Chinnadurai R, Pöhlmann S, Chaipan C, Biet T, Peters T, Meyer B, Wilhelm D, Lu H, Jing W, Jiang S, Forssmann WG, Kirchhoff F (2007) Discovery and optimization of a natural HIV-1 entry inhibitor targeting the gp41 fusion peptide. Cell 129:243–245

    Article  Google Scholar 

  • Pantophlet R, Burton DR (2006) GP120: target for neutralizing HIV-1 antibodies. Annu Rev Immunol 24:739–769

    Article  CAS  PubMed  Google Scholar 

  • Sun RW, Chen R, Chung NP, Ho CM, Lin CL, Che CM (2005) Silver nanoparticles fabricated in herpes buffer exhibit cytoprotective activities toward HIV-1 infected cells. Chem Commun 40:5059–5061

    Article  Google Scholar 

  • Thurman RB, Gerba CP (1989) The molecular mechanisms of Copper and Silver ion disinfection of bacteria and virsuses. CRC Crit Rev Environ Control 18(4):295–315

    Article  Google Scholar 

  • Tokumaru T, Shimizu Y, Fox CL Jr (1974) Antiviral activities of silver sulfadiazine in ocular infection. Res Commun Chem Pathol Pharmacol 8(1):151–158

    CAS  PubMed  Google Scholar 

  • Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280:1884–1888

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Liu Y, Wang Q, Shi H, Li G, Zhang L (2003) The plasmon resonance absorption of Ag/SiO2 nanocomposite films. Microelectron Eng 66:192–198

    Article  CAS  Google Scholar 

  • Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang SH, Yang X, Zhang MY, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD (2007) Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445:732–737

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This research was supported by the Office of Naval Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Mastro.

Additional information

Michael A. Mastro and Andrew W. Hardy contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mastro, M.A., Hardy, A.W., Boasso, A. et al. Non-toxic inhibition of HIV-1 replication with silver–copper nanoparticles. Med Chem Res 19, 1074–1081 (2010). https://doi.org/10.1007/s00044-009-9253-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00044-009-9253-1

Keywords

Navigation