Skip to main content
Log in

Harmonic Analysis on the Möbius Gyrogroup

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

In this paper we propose to develop harmonic analysis on the Poincaré ball \({{\mathbb {B}}_{t}^{n}}\), a model of the \(n\)-dimensional real hyperbolic space. The Poincaré ball \({{\mathbb {B}}_{t}^{n}}\) is the open ball of the Euclidean \(n\)-space \(\mathbb {R}^n\) with radius \(t >0\), centered at the origin of \(\mathbb {R}^n\) and equipped with Möbius addition, thus forming a Möbius gyrogroup where Möbius addition in the ball plays the role of vector addition in \(\mathbb {R}^n.\) For any \(t>0\) and an arbitrary parameter \(\sigma \in \mathbb {R}\) we study the \((\sigma ,t)\)-translation, the \((\sigma ,t)\)-convolution, the eigenfunctions of the \((\sigma ,t)\)-Laplace–Beltrami operator, the \((\sigma ,t)\)-Helgason Fourier transform, its inverse transform and the associated Plancherel’s Theorem, which represent counterparts of standard tools, thus, enabling an effective theory of hyperbolic harmonic analysis. Moreover, when \(t \rightarrow +\infty \) the resulting hyperbolic harmonic analysis on \({{\mathbb {B}}_{t}^{n}}\) tends to the standard Euclidean harmonic analysis on \(\mathbb {R}^n,\) thus unifying hyperbolic and Euclidean harmonic analysis. As an application we construct diffusive wavelets on \({{\mathbb {B}}_{t}^{n}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahlfors, L.: Möbius Transformations in Several Dimensions. University of Minnesota School of Mathematics, Minneapolis (1981)

    MATH  Google Scholar 

  2. Ahlfors, L.: Möbius transformations in \(\mathbb{R}^n\) expressed through \(2 \times 2\) matrices of Clifford numbers. Complex Var. 5, 215–221 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alonso, M., Pogosyan, G., Wolf, K.: Wigner functions for curved spaces I: On hyperboloids. J. Math. Phys. 7(12), 5857–5871 (2002)

    Article  MathSciNet  Google Scholar 

  4. Cnops, J.: Hurwitz pairs and applications of Möbius transformations. Habilitation dissertation, Universiteit Gent, Faculteit van de Wetenschappen (1994)

  5. Delanghe, R., Sommen, F., Souc̆ek, V.: Clifford Algebras and Spinor-Valued Functions. Kluwer Acad. Publ., Dordrecht (1992)

    Book  Google Scholar 

  6. Ebert, S.: Wavelets and Lie groups and homogeneous spaces. PhD thesis, TU Bergakademie Freiberg (2011).

  7. Ebert, S., Wirth, J.: Diffusive wavelets on groups and homogeneous spaces. Proc. R Soc. Edinb. 141A, 497–520 (2011)

    Article  MathSciNet  Google Scholar 

  8. Ferreira, M.: Factorizations of Möbius gyrogroups. Adv. Appl. Clifford Algebr. 19(2), 303–323 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Ferreira, M., Ren, G.: Möbius gyrogroups: a Clifford algebra approach. J. Algebra 328(1), 230–253 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  10. Foguel, T., Ungar, A.A.: Gyrogroups and the decomposition of groups into twisted subgroups and subgroups. Pac. J. Math 197(1), 1–11 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Helgason, S.: Groups and Geometric Analysis. Academic Press, Orlando, FL (1984)

    MATH  Google Scholar 

  12. Helgason, S.: Geometric Analysis on Symmetric Spaces. AMS, Providence, RI (1994)

    Book  MATH  Google Scholar 

  13. Hua, L.K.: Starting with the Unit Circle. Springer, New-York (1981)

    Book  MATH  Google Scholar 

  14. Koornwinder, T.H.: A new proof of a Payley–Wiener type theorem for the Jacobi transform. Ark. Mat. 13, 145–159 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  15. Koornwinder, T.H.: Jacobi functions and analysis on non-compact semisimple groups. Special Functions Group Theoretical Aspects and Applications, Reidel, Dordrecht, pp. 1–84 (1984)

  16. Lal, R., Yadav, A.: Topological right gyrogroups and gyrotransversals. Comm. Algebra 41(9), 3559–3575 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Liu, C., Peng, L.: Generalized Helgason–Fourier transforms associated to variants of the Laplace-Beltrami operators on the unit ball in \(\mathbb{R}^{n}\). Indiana Univ. Math. J. 58(3), 1457–1492 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ungar, A.A.: Thomas precession and the parametrization of the Lorentz transformation group. Found. Phys. Lett. 1, 57–89 (1988)

    Article  MathSciNet  Google Scholar 

  19. Ungar, A.A.: Thomas precession and its associated grouplike structure. Am. J. Phys. 59, 824–834 (1991)

    Article  MathSciNet  Google Scholar 

  20. Ungar, A.A.: Extension of the unit disk gyrogroup into the unit ball of any real inner product space. J. Math. Anal. Appl. 202(3), 1040–1057 (1996)

  21. Ungar, A.A.: Thomas precession: its underlying gyrogroup axioms and their use in hyperbolic geometry and relativistic physics. Found. Phys. 27(6), 881–951 (1997)

    Article  MathSciNet  Google Scholar 

  22. Ungar, A.A.: Möbius transformations of the ball, Ahlfors’ rotation and gyrovector spaces. In: Rassias, Themistocles M. (ed.) Nonlinear Analysis in Geometry and Topology, pp. 241–287. Hadronic Press, Palm Harbor, FL (2000)

    Google Scholar 

  23. Ungar, A.A.: Analytic Hyperbolic Geometry—Mathematical Foundations and Applications. World Scientific, Hackensack, NJ (2005)

  24. Ungar, A. A.: Analytic Hyperbolic Geometry and Albert Einstein’s Special Theory of Relativity. World Scientific, Hackensack, NJ (2008)

  25. Ungar, A.A.: From Möbius to gyrogroups. Am. Math. Montly 115(2), 138–144 (2008)

    MATH  MathSciNet  Google Scholar 

  26. Ungar, A.A.: Barycentric Calculus in Euclidean and Hyperbolic Geometry: A Comparative Introduction. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ (2010)

    Book  Google Scholar 

  27. Ungar, A.A.: Hyperbolic Triangle Centers: The Special Relativistic Approach. Springer-Verlag, New York (2010)

    Book  Google Scholar 

  28. Waterman, P.: Möbius transformations in several dimensions. Adv. Math. 101, 87–113 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  29. Vahlen, K.: Über Bewegungen und komplexe Zahlen. Math. Ann. 55, 585–593 (1902)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by Portuguese funds through the CIDMA - Center for Research and Development in Mathematics and Applications, and the Portuguese Foundation for Science and Technology (“FCT - Fundação para a Ciência e a Tecnologia”), within project PEst-OE/MAT/UI4106/2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milton Ferreira.

Additional information

Communicated by Hans G. Feichtinger.

Appendices

Appendix 1: Spherical Harmonics

A spherical harmonic of degree \(k\ge 0\) denoted by \(Y_k\) is the restriction to \({\mathbb {S}}^{n-1}\) of a homogeneous harmonic polynomial in \(\mathbb {R}^n.\) The set of all spherical harmonics of degree \(k\) is denoted by \(\mathcal {H}_k({\mathbb {S}}^{n-1}).\) This space is a finite dimensional subspace of \(L^2({\mathbb {S}}^{n-1})\) and we have the direct sum decomposition

$$\begin{aligned} L^2({\mathbb {S}}^{n-1}) = \bigoplus _{k=0}^\infty \mathcal {H}_k({\mathbb {S}}^{n-1}). \end{aligned}$$

The following integrals are obtained from the generalisation of Lemma 2.4 in [17].

Lemma 5

[17] Let \(\nu \in \mathbb {C}, k \in \mathbb {N}_0, t \in \mathbb {R}^+,\) and \(Y_k \in \mathcal {H}_k({\mathbb {S}}^{n-1}).\) Then

$$\begin{aligned} \displaystyle \int _{{\mathbb {S}}^{n-1}} \frac{Y_k(\xi )}{\left\| \frac{x}{t}-\xi \right\| ^{2\nu }}~d\sigma (\xi ) \!=\! \frac{(\nu )_k}{(n/2)_k}\,{}_2F_1 \left( k\!+\!\nu , \nu \!-\!\frac{n}{2}\!+\!1; k\!+\!\frac{n}{2}; \frac{\Vert x\Vert ^2}{t^2}\right) \frac{\Vert x\Vert ^k}{t^k}Y_k(x') \end{aligned}$$

where \(x \in {{\mathbb {B}}_{t}^{n}}, x'=\Vert x\Vert ^{-1}x,\) \((\nu )_k\) denotes the Pochammer symbol, and \(d\sigma \) is the normalised surface measure on \({\mathbb {S}}^{n-1}.\) In particular, when \(k=0,\) we have

$$\begin{aligned} \displaystyle \int _{{\mathbb {S}}^{n-1}} \frac{1}{\left\| \frac{x}{t}-\xi \right\| ^{2\nu }}~d\sigma (\xi ) ={}_2F_1 \left( \nu , \nu -\frac{n}{2}+1; \frac{n}{2}; \frac{\Vert x\Vert ^2}{t^2}\right) . \end{aligned}$$
(81)

The Gauss Hypergeometric function \({}_2F_1\) is an analytic function for \(|z|<1\) defined by

$$\begin{aligned} \displaystyle {}_2F_1(a,b;c;z)= \displaystyle \sum _{k=0}^{\infty } \frac{(a)_k(b)_k}{(c)_k}\frac{z^k}{k!} \end{aligned}$$

with \(c \notin -\mathbb {N}_0.\) If \(\text {Re}(c-a-b)>0\) and \(c \notin -{\mathbb N}_0\) then exists the limit \(\displaystyle \lim _{t\rightarrow 1^{-}} {}_2F_1(a,b;c;t)\) and equals

$$\begin{aligned} {}_2F_1(a,b;c;1) = \displaystyle \frac{\Gamma (c)\Gamma (c-a-b)}{\Gamma (c-a)\Gamma (c-b)}. \end{aligned}$$
(82)

Some useful properties of this function are

$$\begin{aligned} {}_2F_1(a,b;c;z) = (1-z)^{c-a-b}\,{}_2F_1(c-a,c-b;c;z) \end{aligned}$$
(83)
$$\begin{aligned} {}_2F_1(a,b;c;z) = (1-z)^{-a}\,{}_2F_1\left( a,c-b;c;\frac{z}{z-1}\right) \end{aligned}$$
(84)
$$\begin{aligned} \frac{d}{dz}\,{}_2F_1(a,b;c;z) = \frac{ab}{c}\,{}_2F_1(a+1,b+1;c+1;z). \end{aligned}$$
(85)

Appendix 2: Jacobi Functions

The classical theory of Jacobi functions involves the parameters \(\alpha ,\beta ,\lambda \in \mathbb {C}\) (see [14, 15]). Here we introduce the additional parameter \(t \in \mathbb {R}^+\) since we develop our hyperbolic harmonic analysis on a ball of arbitrary radius \(t.\) For \(\alpha ,\beta ,\lambda \in \mathbb {C},\) \(t \in \mathbb {R}^+,\) and \(\alpha \ne -1,-2,\ldots ,\) we define the Jacobi transform as

$$\begin{aligned} \mathcal {J}_{\alpha ,\beta }g(\lambda t) = \int _0^{+\infty } g(r) \varphi _{\lambda t}^{(\alpha ,\beta )}(r) \,\omega _{\alpha ,\beta }(r)~dr \end{aligned}$$
(86)

for all functions \(g\) defined on \(\mathbb {R}^+\) for which the integral (86) is well defined. The weight function \(\omega _{\alpha ,\beta }\) is given by

$$\begin{aligned} \omega _{\alpha ,\beta }(r) = (2\sinh (r))^{2\alpha +1}(2\cosh (r))^{2\beta +1} \end{aligned}$$

and the function \(\varphi _{\lambda t}^{(\alpha ,\beta )}(r)\) denotes the Jacobi function which is defined as the even \(C^\infty \) function on \(\mathbb {R}\) that equals \(1\) at \(0\) and satisfies the Jacobi differential equation

$$\begin{aligned}&\left( \frac{d^2}{dr^2} + ((2\alpha +1)\coth (r) + (2\beta +1)\tanh (r))\frac{d}{dr} + (\lambda t)^2 + (\alpha +\beta +1)^2 \right) \\&\quad \varphi _{\lambda t}^{(\alpha ,\beta )}(r)=0. \end{aligned}$$

The function \(\varphi _{\lambda t}^{(\alpha ,\beta )}(r)\) can be expressed as an hypergeometric function

$$\begin{aligned} \varphi _{\lambda t}^{(\alpha ,\beta )}(r) = {}_2F_1 \left( \frac{\alpha + \beta +1 + {\mathrm {i}}\lambda t}{2}, \frac{\alpha + \beta +1 - {\mathrm {i}}\lambda t}{2}; \alpha +1; - \sinh ^2(r)\right) . \end{aligned}$$
(87)

Since \(\varphi _{\lambda t }^{(\alpha ,\beta )}\) are even functions of \(\lambda t \in \mathbb {C}\) then \(\mathcal {J}_{\alpha ,\beta }g(\lambda t)\) is an even function of \(\lambda t\). Payley-Wiener Theorem and some inversion formulas for the Jacobi transform are found in [15]. We denote by \(C^{\infty }_{0,R}(\mathbb {R})\) the space of even \(C^\infty \)-functions with compact support on \(\mathbb {R}\) and \(\mathcal {E}\) the space of even and entire functions \(g\) for which there are positive constants \(A_g\) and \(C_{g,n}, n=0,1,2,\ldots ,\) such that for all \(\lambda \in \mathbb {C}\) and all \(n=0,1,2,\ldots \)

$$\begin{aligned} |g(x)| \le C_{g,n}(1+|\lambda |)^{-n}\,e^{A_g|\text {Im}(\lambda )|} \end{aligned}$$

where \(\text {Im}(\lambda )\) denotes the imaginary part of \(\lambda .\)

Theorem 9

([15, p. 8]) (Payley–Wiener Theorem) For all \(\alpha ,\beta \in \mathbb {C}\) with \(\alpha \ne -1,-2,\ldots \) the Jacobi transform is bijective from \(C^{\infty }_{0,R}(\mathbb {R})\) onto \(\mathcal {E}.\)

The Jacobi transform can be inverted under some conditions [15]. Here we only refer to the case which is used in this paper.

Theorem 10

([15, p. 9]) Let \(\alpha ,\beta \in \mathbb {R}\) such that \(\alpha >-1, \alpha \pm \beta +1 \ge 0.\) Then for every \(g \in C^{\infty }_{0,R}(\mathbb {R})\) we have

$$\begin{aligned} g(r) = \frac{1}{2\pi }\int _0^{+\infty } (\mathcal {J}_{\alpha ,\beta }g)(\lambda t) ~ \varphi _{\lambda t}^{(\alpha ,\beta )}(r)~|c_{\alpha ,\beta }(\lambda t)|^{-2} ~t ~ d\lambda , \end{aligned}$$
(88)

where \(c_{\alpha ,\beta }(\lambda t)\) is the Harish-Chandra \(c\)-function associated to \(\mathcal {J}_{\alpha ,\beta }(\lambda t)\) given by

$$\begin{aligned} c_{\alpha ,\beta }(\lambda t)= \frac{2^{\alpha +\beta +1-{\mathrm {i}}\lambda t} \Gamma (\alpha +1)\Gamma ({\mathrm {i}}\lambda t)}{\Gamma \left( \frac{\alpha +\beta +1+{\mathrm {i}}\lambda t}{2} \right) \Gamma \left( \frac{\alpha -\beta +1+{\mathrm {i}}\lambda t}{2} \right) }. \end{aligned}$$
(89)

This theorem provides a generalisation of Theorem 2.3 in [15] for arbitrary \(t \in \mathbb {R}^+.\) From [15] and considering \(t \in \mathbb {R}^+\) arbitrary we have the following asymptotic behavior of \(\phi _{\lambda t}^{\alpha ,\beta }\) for \(\text {Im}(\lambda )<0:\)

$$\begin{aligned} \lim _{r \rightarrow +\infty } \varphi _{\lambda t}^{(\alpha ,\beta )}(r) e^{(-{\mathrm {i}}\lambda t +\alpha +\beta +1)r}= c_{\alpha ,\beta }(\lambda t). \end{aligned}$$
(90)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, M. Harmonic Analysis on the Möbius Gyrogroup. J Fourier Anal Appl 21, 281–317 (2015). https://doi.org/10.1007/s00041-014-9370-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-014-9370-1

Keywords

Mathematics Subject Classification

Navigation