Skip to main content
Log in

The Lagrangian Radon Transform and the Weil Representation

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We consider the operator \(\mathcal {R}\), which sends a function on \({\mathbb {R}}^{2n}\) to its integrals over all affine Lagrangian subspaces in \({\mathbb {R}}^{2n}\). We discuss properties of the operator \(\mathcal {R}\) and of the representation of the affine symplectic group in several function spaces on \({\mathbb {R}}^{2n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Asorey, M., Facchi, P., Man’ko, V.I. et al.: Generalized quantum tomographic maps. Phys. Scr. 85, 6 (2012). Article number 065001

    Google Scholar 

  2. Berceanu, S.: Coherent states associated to the real Jacobi group. XXVI Workshop on Geometrical Methods in Physics. AIP Conference Proceedings, 956, pp. 233–239. American Institute of Physics, Melville, NY (2007)

  3. Berndt, R., Schmidt, R.: Elements of the representation theory of the Jacobi group. Progress in Mathematics, 163, xiv+213 p., Birkhäuser Verlag, Basel (1998)

  4. Esposito, G., Marmo, G., Sudarshan, G.: From Classical to Quantum Mechanics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  5. Gelfand, I.M., Gindikin, S.G., Graev, M.I.: Integral geometry in affine and projective spaces. J. Sov. Math. 18(1), 39–167 (1982)

    Article  Google Scholar 

  6. Gelfand, I.M., Gindikin, S.G., Graev, M.I.: Selected Topics in Integral Geometry. American Mathematical Society, Providence, RI (2003)

    MATH  Google Scholar 

  7. Gonzalez, F.B., Kakehi, T.: Invariant differential operators and the range of the matrix Radon transform. J. Funct. Anal. 241(1), 232–267 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grinberg, E.L.: On images of Radon transforms. Duke Math. J. 52(4), 939–972 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Helgason, S.: Integral Geometry and Radon transforms, 2nd edn. Birkhäuser Boston (1999)

  10. Helgason, S.: Geometric Analysis on Symmetric Spaces. Mathematical Surveys and Monographs, 39. American Mathematical Society, Providence, RI (1994)

  11. Hua, L.K.: Harmonic analysis of functions of several complex variables in classical domains. Beijing (1958) (Chinese); Russian translation: Moscow, Inostrannaya literatura (1959); English translation: American Mathematical Society, Providence (1963)

  12. Ibort, A., Man’ko, V.I., Marmo, G., et al.: A pedagogical presentation of a \(C^*\)-algebraic approach to quantum tomography. Phys. Scripta 84, 6 (2011). Article number 06500

    Google Scholar 

  13. Ibort, A., Man’ko, V.I., Marmo, G., et al.: On the tomographic picture of quantum mechanics. Phys. Lett. A 374(26), 2614–2617 (2012)

    Article  MathSciNet  Google Scholar 

  14. Ibort, A., Lopez-Yela, A., Mank’ko, V.I., et al.: On the tomographic description of classical fields. Phys. Lett. A 376(17), 1417–1425 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kobayashi, T., Orsted, B., Pevzner, M.: Geometric analysis on small unitary representations of \({\rm GL}(N,\mathbb{R})\). J. Funct. Anal. 260(6), 1682–1720 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Man’ko, O., Man’ko, V., Marmo, G.: Star-product of generalized Wigner-Weyl symbols on \(SU(2)\)-group, deformations, and tomographic probability distribution. Phys. Scr. 62, 6, 446–452 (2000)

    Google Scholar 

  17. Man’ko, V.I., Marmo, G., Simoni, A., et al.: Tomography in abstract Hilbert space. Open Syst. Inf. Dyn. 13(3), 239–253 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Man’ko, V.I., Marmo, G., Simoni, A., et al.: Tomograms in the quantum-classical transition. Phys. Lett. A 343(4), 251–266 (2005)

    Article  MATH  Google Scholar 

  19. Man’ko, V.I., Marmo, G., Simoni, A., et al.: A tomographic setting for quasidistribution functions. Rep. Math. Phys. 61(3), 337–359 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  20. Man’ko, V.I., Marmo, G., Simoni, A., et al.: On the meaning and interpretation of tomography in abstract Hilbert spaces. Phys. Lett. A 351(1–2), 1–12 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  21. Michor, P.: Topics in Differential Geometry, Graduate Studies in Mathematics, vol. 93. American Mathematical Society, Providence, RI (2008) MR MR2428390

  22. Neretin, Y.A.: Categories of Symmetries and Infinite-Dimensional Groups. London Mathematical Society Monographs. New Series. 16. Clarendon Press, Oxford (1996)

  23. Neretin, Y.A.: Lectures on Gaussian Integral Operators and Classical Groups. European Mathematical Society (2011)

  24. Nievergelt, Y.: Exact reconstruction filters to invert Radon transforms with finite elements. J. Math. Anal. Appl. 120(1), 288–314 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Ournycheva, E., Rubin, B.: Method of mean value operators for Radon transforms in the space of matrices. Int. J. Math. 19(3), 245–283 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Petrov, E.E.: The Radon transform in matrix spaces and in Grassmann manifolds (Russian). English translation: Soviet Math. Dokl. 8, 1504–1507 (1967)

  27. Petrov, E.E.: The Radon transformation in a matrix space (Russian). Trudy Sem. Vektor. Tenzor. Anal. 15, 279–315 (1970)

    MATH  MathSciNet  Google Scholar 

  28. Vergne, M., Rossi, H.: Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math. 136(1–2), 1–59 (1976)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter W. Michor.

Additional information

Communicated by Karlheinz Gröchenig.

YuAN was supported by FWF Projects P 22122 and P 25142.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marmo, G., Michor, P.W. & Neretin, Y.A. The Lagrangian Radon Transform and the Weil Representation. J Fourier Anal Appl 20, 321–361 (2014). https://doi.org/10.1007/s00041-013-9315-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-013-9315-0

Keywords

Mathematics Subject Classification

Navigation