Skip to main content
Log in

A Dimensionally Continued Poisson Summation Formula

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

We generalize the standard Poisson summation formula for lattices so that it operates on the level of theta series, allowing us to introduce noninteger dimension parameters (using the dimensionally continued Fourier transform). When combined with one of the proofs of the Jacobi imaginary transformation of theta functions that does not use the Poisson summation formula, our proof of this generalized Poisson summation formula also provides a new proof of the standard Poisson summation formula for dimensions greater than 2 (with appropriate hypotheses on the function being summed). In general, our methods work to establish the (Voronoi) summation formulae associated with functions satisfying (modular) transformations of the Jacobi imaginary type by means of a density argument (as opposed to the usual Mellin transform approach). In particular, we construct a family of generalized theta series from Jacobi theta functions from which these summation formulae can be obtained. This family contains several families of modular forms, but is significantly more general than any of them. Our result also relaxes several of the hypotheses in the standard statements of these summation formulae. The density result we prove for Gaussians in the Schwartz space may be of independent interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The integral representation for 0 F 1 we used is 07.17.07.0004.01 on the Wolfram Functions Site [41].

  2. These identities are 03.01.03.0004.01 and 07.17.03.0037.01, respectively, on the Wolfram Functions Site [41].

  3. The Maclaurin series for 0 F 1 is 07.17.02.0001.01 on the Wolfram Functions Site [41].

  4. Nota bene: We denote the set of positive integers by ℕ, and the set of nonnegative integers by ℕ0.

  5. Nota bene: Simon defines the h n without the factor of (−1)n (that here comes from our H n ). We have included the (−1)n for notational simplicity (since we use the standard convention for the Hermite polynomials). This does not have any effect on Simon’s Theorem 3, since it simply amounts to a sign change of the odd Hermite coefficients.

  6. This is 05.01.11.0001.01 on the Wolfram Functions Site [41].

  7. Personal communication from John Roe.

  8. This differential equation for 0 F 1 is 07.17.13.0003.01 on the Wolfram Functions Site [41].

  9. The notebook is available at http://gravity.psu.edu/~nathanjm/Dim_cont_PSF_test.nb.

  10. But note that Ryavec characterizes all admissible ϒs (under certain assumptions) for d=1 in [33]. We also call attention to the work of Córdoba [11, 12], who shows that in integer dimensions, large classes of generalized Poisson summation formulae arise from the standard Poisson summation formula applied to the finite disjoint union of (integer dimensional) lattices. (Note that Lagarias makes a slight correction to the statement of Theorem 2 of [11] in Theorem 3.7 of [23].)

References

  1. Andrews, G.E., Askey, R., Roy, R.: Special functions. In: Encyclopedia of Mathematics and Its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  2. Baake, M., Grimm, U.: A note on shelling. Discrete Comput. Geom. 30, 573–589 (2003)

    MathSciNet  MATH  Google Scholar 

  3. Baake, M., Frettlöh, D., Grimm, U.: A radial analogue of Poisson’s summation formula with applications to powder diffraction and pinwheel patterns. J. Geom. Phys. 57, 1331–1343 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bellman, R.: A Brief Introduction to Theta Functions. Holt, Rinehart and Winston, New York (1961)

    MATH  Google Scholar 

  5. Bochner, S.: Some properties of modular relations. Ann. Math. 53, 332–363 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bochner, S.: Harmonic Analysis and the Theory of Probability. University of California Press, Berkeley (1955)

    MATH  Google Scholar 

  7. Cohen, H.: Number Theory, Volume II: Analytic and Modern Tools. Springer, New York (2007)

    MATH  Google Scholar 

  8. Contino, R., Gambassi, A.: On dimensional regularization of sums. J. Math. Phys. 44, 570–587 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Conway, J.B.: A Course in Functional Analysis, 2nd edn. Springer, New York (1990)

    MATH  Google Scholar 

  10. Conway, J.H., Sloane, N.J.A.: Sphere Packings, Lattices and Groups, 3rd edn. Springer, New York (1999)

    MATH  Google Scholar 

  11. Córdoba, A.: La formule sommatoire de Poisson. C. R. Acad. Sci. Paris, Sér. I Math. 306, 373–376 (1988)

    MATH  Google Scholar 

  12. Córdoba, A.: Dirac combs. Lett. Math. Phys. 17, 191–196 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ferrar, W.L.: Summation formulae and their relation to Dirichlet’s series II. Compos. Math. 4, 394–405 (1937)

    MathSciNet  MATH  Google Scholar 

  14. Guinand, A.P.: Integral modular forms and summation formulae. Proc. Camb. Philol. Soc. 43, 127–129 (1947)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guinand, A.P.: Concordance and the harmonic analysis of sequences. Acta Math. 101, 235–271 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hanke, J.: Some recent results about (ternary) quadratic forms. In: Kisilevsky, H., Goren, E.Z. (eds.) Number Theory, CRM Proc. Lecture Notes, vol. 36, pp. 147–164. American Mathematical Society, Providence (2004)

    Google Scholar 

  17. Huxley, M.N.: Area, Lattice Points, and Exponential Sums. Oxford University Press, New York (1996)

    MATH  Google Scholar 

  18. Iwaniec, H., Kowalski, E.: Analytic Number Theory. American Mathematical Society, Providence (2004)

    MATH  Google Scholar 

  19. Jenkins, P., Rouse, J.: Bounds for coefficients of cusp forms and extremal lattices. Bull. Lond. Math. Soc. 43, 927–938 (2011)

    Article  MATH  Google Scholar 

  20. Johnson, R.E., Ranganathan, S.: Generalized approach to Ewald sums. Phys. Rev. E 75, 056706 (2007)

    Article  Google Scholar 

  21. Johnson-McDaniel, N.K., Owen, B.J.: Shear modulus of the hadron-quark mixed phase. arXiv:1110.4650 [astro-ph.SR]

  22. Kubota, T.: On an analogy to the Poisson summation formula for generalized Fourier transformation. J. Reine Angew. Math. 268/269, 180–189 (1974)

    Article  MathSciNet  Google Scholar 

  23. Lagarias, J.C.: Mathematical quasicrystals and the problem of diffraction. In: Baake, M., Moody, R.V. (eds.) Directions in Mathematical Quasicrystals, CRM Monograph Series, vol. 13, pp. 61–93. American Mathematical Society, Providence (2000)

    Google Scholar 

  24. Lang, S.: Real and Functional Analysis, 3rd edn. Springer, New York (1993)

    Book  MATH  Google Scholar 

  25. Mallows, C.L., Odlyzko, A.M., Sloane, N.J.A.: Upper bounds for modular forms, lattices, and codes. J. Algebra 36, 68–76 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  26. Miller, S.D., Schmid, W.: Summation formulas, from Poisson and Voronoi to the present. In: Delorme, P., Vergne, M. (eds.) Noncommutative Harmonic Analysis: In honor of Jacques Carmona, pp. 419–440. Birkhäuser, Boston (2004)

    Chapter  Google Scholar 

  27. Moody, R.V., Patera, J.: Quasicrystals and icosians. J. Phys. A, Math. Gen. 26, 2829–2853 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. Moody, R.V., Weiss, A.: On shelling E 8 quasicrystals. J. Number Theory 47, 405–412 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  29. Morita, J., Sakamoto, K.: Octagonal quasicrystals and a formula for shelling. J. Phys. A, Math. Gen. 31, 9321–9325 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pache, C.: Shells of selfdual lattices viewed as spherical designs. Int. J. Algebra Comput. 15, 1085–1127 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rankin, R.A.: Modular Forms and Functions. Cambridge University Press, Cambridge (1977)

    Book  MATH  Google Scholar 

  32. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I: Functional Analysis, rev. and enl. edn. Academic Press, New York (1980)

    MATH  Google Scholar 

  33. Ryavec, C.: The Poisson summation formula. Aequ. Math. 21, 246–250 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schwartz, L.: Théorie des Distributions, 3rd edn. Hermann, Paris (1998)

    MATH  Google Scholar 

  35. Simon, B.: Distributions and their Hermite expansions. J. Math. Phys. 12, 140–148 (1971)

    Article  MATH  Google Scholar 

  36. Sklar, A.: On some exact formulae in analytic number theory. In: Marsh, D.C.B. (ed.) Report of the Institute in the Theory of Numbers, pp. 104–110. American Mathematical Society, Boulder (1959)

    Google Scholar 

  37. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  38. Unterberger, A.: A spectral analysis of automorphic distributions and Poisson summation formulas. Ann. Inst. Fourier 54, 1151–1196 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  39. Uribe, A.: Trace formulae. In: Pérez-Esteva, S., Villegas-Blas, C. (eds.) First Summer School in Analysis and Mathematical Physics, Cuernavaca, Mexico, Contemp. Math., vol. 260, pp. 61–90. American Mathematical Society, Providence (2000)

    Chapter  Google Scholar 

  40. Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis, 4th edn. Cambridge University Press, Cambridge (1927)

    MATH  Google Scholar 

  41. Wolfram Research: The Wolfram Functions Site (2011). http://functions.wolfram.com

Download references

Acknowledgements

It is our pleasure to thank George Andrews, Jingzhi Tie, and Shuzhou Wang for encouragement and useful comments, John Roe for mentioning an alternative proof of the density result, Artur Tšobanjan for helpful remarks about the exposition, and the anonymous referee for various perceptive comments and suggestions. We also thank Ben Owen for comments on the manuscript and for suggesting the physics problem that sparked these investigations. This work was supported by NSF grants PHY-0555628 and PHY-0855589, the Eberly research funds of Penn State, and the DFG SFB/Transregio 7.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan K. Johnson-McDaniel.

Additional information

Communicated by Hans G. Feichtinger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson-McDaniel, N.K. A Dimensionally Continued Poisson Summation Formula. J Fourier Anal Appl 18, 367–385 (2012). https://doi.org/10.1007/s00041-011-9207-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00041-011-9207-0

Keywords

Mathematics Subject Classification (2010)

Navigation