Skip to main content
Log in

Cuticular lipids correlate with age and insemination status in queen honeybees

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

Eusocial insects exhibit reproductive division of labour, in which one or a few queens perform almost all of the reproduction, while the workers are largely sterile and assist in rearing their siblings. Consequently, many of the colony’s tasks (e.g. nest construction and brood rearing) should be modulated depending on whether the queen is fertile. Here, we tested whether queens’ cuticular lipids could provide reliable signals of fertility in the honeybee Apis mellifera, as they do in other social Hymenoptera. Specifically, we tested whether cuticular lipids differ between virgin queens of different ages, and between queens exposed to different artificial insemination treatments being semen (sperm and seminal fluid), seminal fluid only or saline control. Using gas chromatography–mass spectrometry, we found 27 lipids: 21 different hydrocarbons, namely alkanes, alkenes and dienes, as well as six wax esters. The lipid profile changed dramatically in the first 10 days after eclosion, and there were differences in lipid composition between virgin and artificially inseminated queens. Insemination with semen, seminal fluid or saline did not result in distinct chemical profiles. Our findings indicate that the physical stimulus of insemination was responsible for the observed changes in the cuticular profile in honeybee queens. Our results demonstrate that cuticular lipid profiles encode information on queen age, fertility and mating status, which could in principle be utilised by workers and rival queens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akino T., Yamamura K., Wakamura S. and Yamaoka R. 2004. Direct behavioral evidence for hydrocarbons as nestmate recognition cues in Formica japonica (Hymenoptera: Formicidae). Appl. Entomol. Zool. 39: 381–387

  • Ayasse M., Marlovits T., Tengö J., Taghizadeh T. and Francke W. 1995. Are there pheromonal dominance signals in the bumblebee Bombus hypnorum L. (Hymenoptera, Apidae)? Apidologie 26: 163–180

  • Baer B., Heazlewood J.L., Taylor N.L., Eubel H. and Millar A.H. 2009. The seminal fluid proteome of the honeybee Apis mellifera. Proteomics 9: 2085–2097

  • Berger B., Camargo A.F. and da Cruz-Landim C. 2005. Effect of narcosis with CO2 on the ovarian development in queens of Apis mellifera (Hymenoptera, Apini). Sociobiology 48: 261–270

  • Blomquist G.J. and Bagnères A.-G. (Eds) 2010. Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology. Cambridge University Press, Cambridge

  • Blum M.S. (Ed) 1992. Honey Bee Pheromones. The Hive and the Honey Bee. Dadant & Sons, Hamilton, Illinois

  • Brandstaetter A., Endler A. and Kleineidam C. 2008. Nestmate recognition in ants is possible without tactile interaction. Naturwissenschaften 95: 601–608

  • Breed M.D. 1998. Recognition pheromones of the honey bee. BioScience 48: 463–470

  • Bruschini C., Cervo R., Cini A., Pieraccini G., Pontieri L., Signorotti L. and Turillazzi S. 2011. Cuticular hydrocarbons rather than peptides are responsible for nestmate recognition in Polistes dominulus. Chem. Senses 36: 715–723

  • Copren K.A., Nelson L.J., Vargo E.L. and Haverty M.I. 2005. Phylogenetic analyses of mtDNA sequences corroborate taxonomic designations based on cuticular hydrocarbons in subterranean termites. Mol. Phylogenet. Evol. 35: 689–700

  • Cronin A.L. and Monnin T. 2010. Self-sacrifice in ‘desperado’ contests between relatives. Front. Zool. 7: 27

  • Crozier R.H. and Dix M.W. 1979. Analysis of two genetic models for the innate components of colony odor in social Hymenoptera. Behav. Ecol. Sociobiol. 4: 217–224

  • Cuvillier-Hot V., Cobb M., Malosse C. and Peeters C. 2001. Sex, age and ovarian activity affect cuticular hydrocarbons in Diacamma ceylonense, a queenless ant. J. Insect Physiol. 47: 485–493

  • d’Ettorre P. and Heinze J. 2005. Individual recognition in ant queens. Curr. Biol. 15: 2170–2174

  • da Cruz-Landim C., Patricio K. and Antonialli W.F.. 2006. Cell death and ovarian development in highly eusocial bees (Hymenoptera, Apidae): Caste differentiation and worker egg laying. Braz. J. Morphol. Sci. 23: 27–42

  • Dani F.R. 2009. Cuticular lipids as semiochemicals in paper wasps and other social insects. Ann. Zool. Fennici 43: 500–514

  • Dani F.R., Jones G.R., Corsi S., Beard R., Pradella D. and Turillazzi S. 2005. Nestmate recognition cues in the honey bee: Differential importance of cuticular alkanes and alkenes. Chem. Senses 30: 477–489

  • Dapporto L., Fondelli L. and Turillazzi S. 2006. Nestmate recognition and identification of cuticular hydrocarbons composition in the swarm founding paper wasp Ropalidia opifex. Biochem. Syst. Ecol. 34: 617–625

  • de Biseau J.C., Passera L., Daloze D. and Aron S. 2004. Ovarian activity correlates with extreme changes in cuticular hydrocarbon profile in the highly polygynous ant, Linepithema humile. J. Insect Physiol. 50: 585–593

  • Dietemann V., Peeters C., Liebig J., Thivet V. and Hölldobler B. 2003. Cuticular hydrocarbons mediate discrimination of reproductives and nonreproductives in the ant Myrmecia gulosa. Proc. Natl Acad. Sci. USA 100: 10341–10346

  • Gibbs A.G. 2002. Lipid melting and cuticular permeability: new insights into an old problem. J. Insect Physiol. 48: 391–400

  • Grozinger C.M., Sharabash N.M., Whitfield C.W. and Robinson G.E. 2003. Pheromone-mediated gene expression in the honey bee brain. Proc. Natl Acad. Sci. USA 100: 14519–14525

  • Holman L., Jørgensen C.G., Nielsen J. and d’Ettorre P. 2010. Identification of an ant queen pheromone regulating worker sterility. Proc. R. Soc. B. 277: 3793–3800

  • Holman L., Lanfear R. and d’Ettorre P. 2013. The evolution of queen pheromones in the ant genus Lasius. J. Evol. Biol. 26: 1549–1558

  • Hoover S.R., Keeling C., Winston M. and Slessor K. 2003. The effect of queen pheromones on worker honey bee ovary development. Naturwissenschaften 90: 477–480

  • Howard R.W. and Blomquist G.J. 2005. Ecological, behavioral and biochemical aspects of insect hydrocarbons. Annu. Rev. Entomol. 50: 371–393

  • Kather R., Drijfhout F. and Martin S. 2011. Task group differences in cuticular lipids in the honey bee Apis mellifera. J. Chem. Ecol. 37: 205–212

  • Keeling C.I., Slessor K.N., Higo H.A. and Winston M.L. 2003. New components of the honey bee (Apis mellifera L.) queen retinue pheromone. Proc. Natl Acad. Sci. USA 100: 4486–4491

  • Keller L. and Nonacs P.1993. The role of queen pheromones in social insects: queen control or queen signal? Anim. Behav. 45: 787–794

  • Kocher S.D., Richard F.-J., Tarpy D.R. and Grozinger C.M. 2009. Queen reproductive state modulates pheromone production and queen-worker interactions in honeybees. Behav. Ecol. 20: 1007–1014

  • Kocher S.D., Richard F.J., Tarpy D.R. and Grozinger C.M. 2008. Genomic analysis of post-mating changes in the honey bee queen (Apis mellifera). BMC Genomics 9: 232

  • Kocher S.D., Tarpy D.R. and Grozinger C.M. 2010. The effects of mating and instrumental insemination on queen honey bee flight behaviour and gene expression. Ins. Mol. Biol. 19: 153–162

  • Laidlaw H.H. and Page R.E. 1997. Queen Rearing and Bee Breeding. Wicwas Press, Cheshire, Connecticut

  • Le Conte Y. and Hefetz A. 2008. Primer pheromones in social Hymenoptera. Annu. Rev. Entomol. 53: 523–542

  • Liebig J., Peeters C., Oldham N.J., Markstädter C. and Hölldobler B. 2000. Are variations in cuticular hydrocarbons of queens and workers a reliable signal of fertility in the ant Harpegnathos saltator? Proc. Natl Acad. Sci. USA 97: 4124–4131

  • Lockey K.H. 1988. Lipids of the insect cuticle: origin, composition and function. Comp. Biochem. Phys. B 89: 595–645

  • Lorenzi M.C., Bagnères A.G. and Clément J.L. 1996. The Role of Cuticular Hydrocarbons in Social Insects: Is it the Same in Paper Wasps? In: Natural History and Evolution of Paper Wasps (Turillazzi S. and West-Eberhard M.J., Eds). Oxford University Press, Oxford, pp 178–189

  • Mackenson O. 1964. Relation of semen volume to success in artificial inseminated of queen honey bees. J. Econ. Entomol. 57: 581–583

  • Maisonnasse A., Alaux C., Beslay D., Crauser D., Gines C., Plettner E. and Le Conte Y. 2010. New insights into honey bee (Apis mellifera) pheromone communication. Is the queen mandibular pheromone alone in colony regulation? Front. Zool. 7: 18

  • Mattila H.R., Reeve H.K. and Smith M.L. 2012. Promiscuous honey bee queens increase colony productivity by suppressing worker selfishness. Curr. Biol. 22: 2027–2031

  • Monnin T. 2006. Chemical recognition of reproductive status in social insects. Finn. Zool. Bot. Publ. Board 43: 515–530

  • Mueller J.K., Eggert A.-K. and Elsner T. 2003. Nestmate recognition in burying beetles: The “breeder’s badge” as a cue used by females to distinguish their mates from male intruders. Behav. Ecol. 14: 212–220

  • Niño E.L., Malka O., Hefetz A., Teal P., Hayes J. and Grozinger C.M. 2012. Effects of honey bee (Apis mellifera L.) queen insemination volume on worker behavior and physiology. J. Insect Physiol. 58: 1082–1089

  • Niño E.L., Malka O., Hefetz A., Tarpy D.R. and Grozinger C.M. 2013. Chemical profiles of two pheromone glands are differentially regulated by distinct mating factors in honey bee queens (Apis mellifera.). PLoS ONE 8: e78637

  • Nunes T.M., Nascimento F.S., Turatti I.C., Lopes N.P. and Zucchi R. 2008. Nestmate recognition in a stingless bee: Does the similarity of chemical cues determine guard acceptance? Anim. Behav. 75: 1165–1171

  • Peeters C. and Liebig J. 2009. Fertility signaling as a general mechanism of regulating reproductive division of labor in ants. In: Organization of Insect Societies: From Genome to Sociocomplexity (Gadau J. and Fewell J., Eds). Harvard University Press, Cambridge, pp 220–242

  • Peeters C., Monnin T. and Malosse C. 1999. Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc. R. Soc. B. 266: 1323–1327

  • Rangel J. and Seeley T.D. 2008. The signals initiating the mass exodus of a honeybee swarm from its nest. Anim. Behav. 76: 1943–1952

  • Richard F.-J., Schal C., Tarpy D.R. and Grozinger C.M. 2011a. Effects of instrumental insemination and insemination quantity on dufour’s gland chemical profiles and vitellogenin expression in honey bee ueens (Apis mellifera). J. Chem. Ecol. 37: 1027–1036

  • Richard F.-J., Tarpy D.R. and Grozinger C.M. 2007. Effects of insemination quantity on honey bee queen physiology. PLoS ONE 2: e980

  • Richard F.-J., Schal C., Tarpy D.R. and Grozinger C.M. 2011b. Effects of instrumental insemination and insemination quantity on dufour’s gland chemical profiles and vitellogenin expression in honey bee queens (Apis mellifera). J. Chem. Ecol. 37: 1027–1036

  • Ruttner F. 1976. The Instrumental Insemination of the Queen Bee. International Beekeeping Technology and Economy. Institute, 2 Edn. Apimondia, Bucharest.

  • Seeley T.D. 1995. The Wisdom of the Hive: The Social Physiology of Honey Bee Colonies. Harvard University Press, Cambrige, MA

  • Seeley T.D., Visscher P.K. and Passino K.M. 2006. Group decision making in honey bee swarms. Am. Sci. 94: 220–229

  • Singer T.L. 1998. Roles of hydrocarbons in the recognition systems of insects. Am. Zool. 38: 394–405

  • Sledge M.F., Boscaro F. and Turillazzi S. 2001. Cuticular hydrocarbons and reproductive status in the social wasp Polistes dominulus. Behav. Ecol. Sociobiol. 49: 401–409

  • Slessor K.N., Kaminski L.-A., King G.G.S., Borden J.H. and Winston M.L. 1988. Semiochemical basis of the retinue response to queen honey bees. Nature 332: 354–356

  • Smith A.A., Hölldobler B. and Liebig J. 2009. Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr. Biol. 19: 78–81

  • Smith A.A., Millar J.G., Hanks L.M. and Suarez A.V. 2012. Experimental evidence that workers recognize reproductives through cuticular hydrocarbons in the ant Odontomachus brunneus. Behav. Ecol. Sociobiol. 66: 1267–1276

  • Strauss K., Scharpenberg H., Crewe R., Glahn F., Foth H. and Moritz R. 2008. The role of the queen mandibular gland pheromone in honeybees (Apis mellifera): Honest signal or suppressive agent? Behav. Ecol. Sociobiol. 62: 1523–1531

  • Tarpy D.R. and Mayer M.K. 2009. The effects of size and reproductive quality on the outcomes of duels between honey bee queens (Apis mellifera L.). Ethol. Ecol. Evol. 21: 147–153

  • Thomas M.L. and Simmons L.W. 2009. Male-derived cuticular hydrocarbons signal sperm competition intensity and affect ejaculate expenditure in crickets. Proc. R. Soc. B 276: 383–388

  • Thomas M.L. and Simmons L.W. 2011. Crickets detect the genetic similarity of mating partners via cuticular hydrocarbons. J. Evol. Biol. 24: 1793–1800

  • Van Oystaeyen A., Oliveira R.C., Holman L., van Zweden J.S., Romero C., Oi C.A, d’Ettorre P., Khalesi M., Billen J., Wäckers F., Millar J.G. and Wenseleers T. 2014. Conserved class of queen pheromones stops social insect workers from reproducing. Science 343: 287–290

  • van Wilgenburg E., Symonds M.R.E. and Elgar M.A. 2011. Evolution of cuticular hydrocarbon diversity in ants. J. Evol. Biol. 24: 1188–1198

  • van Zweden J. and d’Ettore P. 2010. Nestmate Recognition in Social Insects and the Role of Hydrocarbons. In: Insect Hydrocarbons: Biology, Biochemistry, and Chemical Ecology (Blomquist G.J. and Bagnères A.G., Eds). Cambridge University Press, Cambridge

  • Vergoz V., Schreurs H.A. and Mercer A.R. 2007. Queen pheromone blocks aversive learning in young worker bees. Science 317: 384–386

  • Wanner K.W., Nichols A.S., Walden K.K.O., Brockmann A., Luetje C.W. and Robertson H.M. 2007. A honey bee odorant receptor for the queen substance 9-oxo-2-decenoic acid. Proc. Natl Acad. Sci. USA 104: 14383–14388

  • Welch M.D. and Lister R. 2014. Epigenomics and the control of fate, form and function in social insects. Curr. Opin. Insect Sci. 1: 31–38

  • Winston M.L. 1987. The Biology of the Honey Bee. Harvard University Press, Cambridge, Massachusetts

  • Wossler T.C. and Crewe R.M. 1999. Honeybee queen tergal gland secretion affects ovarian development in caged workers. Apidologie 30: 311–320

Download references

Acknowledgments

We were supported by the Australian Research Council (ARC) through a Queen Elizabeth II Fellowship and a Future Fellowship to BB, an ARC Linkage Project to BB and the ARC Centre of Excellence in Plant Energy Biology. We thank the honeybee keepers of Western Australia, especially Better Bees of Western Australia for providing the necessary honeybee material for this study. We also thank Tamara Hartke for statistical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Baer.

Additional information

M. Babis and L. Holman contributed equally to the paper.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babis, M., Holman, L., Fenske, R. et al. Cuticular lipids correlate with age and insemination status in queen honeybees. Insect. Soc. 61, 337–345 (2014). https://doi.org/10.1007/s00040-014-0358-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-014-0358-2

Keywords

Navigation