Skip to main content

Advertisement

Log in

Open relationships in the castles of clay: high diversity and low host specificity of Termitomyces fungi associated with fungus-growing termites in Africa

  • Research Article
  • Published:
Insectes Sociaux Aims and scope Submit manuscript

Abstract

In the African and Asian tropics, termites of the subfamily Macrotermitinae play a major role in the decomposition of dead plant material. Their ecological success lies in the obligate mutualism of the termites with fungi of the genus Termitomyces. Before the advent of molecular studies, the interaction with these fungi was poorly understood. Here, we combined available ITS sequence data from West, Central, and South Africa with data of 39 new samples from East Africa to achieve the most comprehensive view of the diversity and host specificity of Termitomyces symbionts across Africa to date. A high amount of sequence divergence in the ITS sequences was found; 11 different Termitomyces lineages in East Africa and >30 lineages across Africa were identified, and the expected diversity is estimated to be about 41 lineages. The fungal lineages belong to four major clades, each almost exclusively associated with one termite host genus. Analysis of molecular variance revealed that 40% of the ITS sequence variation occurred between host genera, indicating close co-evolution at this level. However, within host genera, fungal lineages and haplotypes were frequently shared among host species and sampling localities, except for fungal symbionts of Odontotermes. Horizontal transmission of fungal symbionts may facilitate the transfer of haplotypes and species among hosts. However, at present, we have little understanding of the maintenance of specificity at the genus level. Possible explanations range from substrate specificity of fungi to an active selection of fungi by termites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Aanen D.K. 2006. As you reap, so shall you sow: coupling of harvesting and inoculating stabilizes the mutualism between termites and fungi. Biol. Lett. 2: 209-212

    Article  PubMed  Google Scholar 

  • Aanen D.K. and Boomsma J.J. 2006a. The evolutionary origin and maintenance of the mutualistic symbiosis between termites and fungi. In: Insect Symbiosis vol. 2 (Miller T. and Bourtzis K., Eds), CRC Press, London, pp 79-95

    Google Scholar 

  • Aanen D.K. and Boomsma J.J. 2006b. Evolutionary dynamics of the mutualistic symbiosis between fungus-growing termites and Termitomyces fungi. In: Insect-Fungal Associations: Ecology and Evolution (Vega F. and Blackwell M., Eds), Oxford University Press, Oxford, pp 191-210

    Google Scholar 

  • Aanen D.K. and Eggleton P. 2005. Fungus-growing termites originated in African rain forest. Curr. Biol. 15: 851-855

    Article  CAS  PubMed  Google Scholar 

  • Aanen D.K., Eggleton P., Rouland-Lefèvre C., Frøslev T.G. and Rosendahl S. 2002. The evolution of fungus-growing termites and their mutualistic fungal symbionts. Proc. Natl. Acad. Sci. USA 99: 14887-14892

    Article  CAS  PubMed  Google Scholar 

  • Aanen D.K., Ros V.I.D., de Fine Licht H.H., Mitchell J., de Beer Z.W., Slippers B., Rouland-Lefèvre C. and Boomsma J.J. 2007. Patterns of interaction specificity of fungus-growing termites and Termitomyces symbionts in South Africa. BMC Evol. Biol. 7: 115

    Article  PubMed  Google Scholar 

  • Aanen D.K., de Fine Licht H.H., Debets A.J.M., Kerstes N.A.G., Hoekstra R.F. and Boomsma J.J. 2009. High symbiont relatedness stabilizes mutualistic cooperation in fungus-growing termites. Science 326: 1103-1106

    Article  CAS  PubMed  Google Scholar 

  • Arnold A.E. and Lutzoni F. 2007. Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? Ecology 88: 541-549

    Article  PubMed  Google Scholar 

  • Bignell D.E. 2000. Symbiosis with fungi. In: Termites: Evolution, Sociality, Symbioses, Ecology (Abe T., Bignell D.E. and Higashi M., Eds), Kluwer Academic Publishers, Dordrecht, pp 189-208

    Google Scholar 

  • Bingham M.G. 2002. Are species of Termitomyces specific to their host termites? Kirkia 18: 77-82

    Google Scholar 

  • Buxton R.D. 1981. Termites and the turnover of dead wood in an arid tropical environment. Oecologia 51: 379-384

    Article  Google Scholar 

  • Chao A. 1984. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11: 265-270

    Google Scholar 

  • Collins N.M. 1981. The role of termites in the decomposition of wood and leaf litter in the Southern Guinea savanna of Nigeria. Oecologia 51: 389-399

    Article  Google Scholar 

  • Darlington J.P.E.C. 1994. Nutrition and evolution in fungus-growing termites. In: Nourishment and Evolution in Insect Societies (Hunt J.H. and Nalepa C.A., Eds), Westview Press, Boulder, pp 105-130

    Google Scholar 

  • de Fine Licht H.H., Andersen A. and Aanen D.K. 2005. Termitomyces sp. associated with the termite Macrotermes natalensis has a heterothallic mating system and multinucleate cells. Mycol. Res. 109: 314-318

    Google Scholar 

  • de Fine Licht H.H., Boomsma J.J. and Aanen D.K. 2006. Presumptive horizontal symbiont transmission in the fungus-growing termite Macrotermes natalensis. Mol. Ecol. 15: 3131-3138

    Article  PubMed  CAS  Google Scholar 

  • de Fine Licht H.H., Boomsma J.J. and Aanen D.K. 2007. Asymmetric interaction specificity between two sympatric termites and their fungal symbionts. Ecol. Entomol. 32: 76-81

    Article  Google Scholar 

  • deMenocal P.B. 2004. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220: 3-24

    Article  CAS  Google Scholar 

  • Excoffier L.G.L. and Schneider S. 2005. Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evol. Bioinform. Online 1: 47-50

    CAS  PubMed  Google Scholar 

  • Felsenstein J. 1981. Evolutionary trees from DNA sequences: A maximum likelihood approach. J. Mol. Evol. 46: 368-376

    Article  Google Scholar 

  • Frøslev T.G., Aanen D.K., Læssøe T. and Rosendahl S. 2003. Phylogenetic relationships of Termitomyces and related taxa. Mycol. Res. 107: 1277-1286

    Article  PubMed  CAS  Google Scholar 

  • Frøslev T.G., Jeppesen T.S., Læssøe T. and Kjøller R. 2007. Molecular phylogenetics and delimitation of species in Cortinarius section Calochroi (Basidiomycota, Agaricales) in Europe. Mol. Phylogenet. Evol. 44: 217-227

    Article  PubMed  CAS  Google Scholar 

  • Gardes M. and Bruns T.D. 1996. ITS-RFLP matching for identification of fungi. In: Species Diagnostics Protocols: PCR and Other Nucleic Acid Methods (Clapp J.P., Ed), Humana Press Inc., Totowa, NJ, pp 177-186

    Google Scholar 

  • Gotelli N.J. and Entsminger G.L. 2004. EcoSim: Null models software for ecology. Version 7. Acquired Intelligence Inc. & Kesey-Bear. Jericho, VT. http://garyentsminger.com/ecosim/index.htm

  • Grassé P.P. and Noirot C. 1955. La fondation de nouvelles sociétés par Bellicositermes natalensis (Hav.). Insect. Soc. 2: 213-220

    Article  Google Scholar 

  • Härkönen M., Saarimäki T. and Mwasumbi L. 1995. Edible mushrooms of Tanzania. Karstenia 35 Suppl.: 92

    Google Scholar 

  • Hasegawa M., Kishino H. and Yano T.-A. 1985. Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22: 160-174

    Article  CAS  PubMed  Google Scholar 

  • Heim R. 1977. Termites et Champignons. Les Champignons Termitophiles d′Afrique Noire et d′Asie Méridionale. Société Nouvelle des Éditions Boubée, Paris, 205 pp

    Google Scholar 

  • Hibbett D.S., Tsuneda A., Fukumasa-Nakai Y. and Donoghue M.J. 1995. Phylogenetic diversity in shiitake inferred from nuclear ribosomal DNA sequences. Mycologia 87: 618-638

    Article  CAS  Google Scholar 

  • Hyodo F., Tayasu I., Inoue T., Azuma J.-I. and Kudo T. 2003. Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae: Isoptera). Funct. Ecol. 17: 186-193

    Article  Google Scholar 

  • Johnson R.A. 1981. Colony development and establishment of the fungus comb in Microtermes sp. nr. usambaricus (Sjöstedt) (Isoptera: Macrotermitinae) from Nigeria. Insect. Soc. 28: 3-12

    Article  Google Scholar 

  • Johnson R.A., Thomas R.J., Wood T.G. and Swift M.J. 1981. The inoculation of the fungus comb in newly founded colonies of some species of the Macrotermitinae (Isoptera) from Nigeria. J. Nat. Hist. 15: 751-756

    Article  Google Scholar 

  • Kambhampati S. and Eggleton P. 2000. Taxonomy and phylogeny of termites. In: Termites: Evolution, Sociality, Symbioses, Ecology (Abe T., Bignell D.E. and Higashi M., Eds), Kluwer Academic Publishers, Dordrecht, pp 1-23

    Google Scholar 

  • Katende A.B., Segawa P., Birnie A., Holding C. and Tengnas B. 1999. Wild Food Plants And Mushrooms of Uganda. Regional Land Management Unit/Sida, Nairobi, Kenya, 490 pp

    Google Scholar 

  • Katoh H., Miura T., Maekawa K., Shinzato N. and Matsumoto T. 2002. Genetic variation of symbiotic fungi cultivated by the macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. Mol. Ecol. 11: 1565-1572

    Article  CAS  PubMed  Google Scholar 

  • Katoh K., Asimenos G. and Toh H. 2009. Multiple alignment of DNA sequences with MAFFT. In: Bioinformatics for DNA Sequence Analysis (Posada D., Ed), Humana Press, Totowa, NJ, pp 39-64

    Chapter  Google Scholar 

  • Kirk P.M., Cannon P.F., Minter D.W. and Stalpers J.A. 2008. Ainsworth & Bisby′s Dictionary of the Fungi, 10th ed. CABI Publishing, Wallingford, 771 pp

    Google Scholar 

  • Korb J. and Aanen D.K. 2003. The evolution of uniparental transmission of fungal symbionts in fungus-growing termites (Macrotermitinae). Behav. Ecol. Sociobiol. 53: 65-71

    Google Scholar 

  • Lynch M.D.J. and Thorn R.G. 2006. Diversity of basidiomycetes in Michigan agricultural soils. Appl. Environ. Microbiol. 72: 7050-7056

    Article  CAS  PubMed  Google Scholar 

  • Maddison W.P. and Maddison D.R. 2009. Mesquite: a modular system for evolutionary analysis. Version 2.6. http://mesquiteproject.org

  • Martin M.M. and Martin J.S. 1978. Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis: The role of acquired digestive enzymes. Science 199: 1453-1455

    Article  CAS  PubMed  Google Scholar 

  • Minin V., Abdo Z., Joyce P. and Sullivan J. 2003. Performance-based selection of likelihood models for phylogeny estimation. Syst. Biol. 52: 674-683

    Article  PubMed  Google Scholar 

  • Moriya S., Inoue T., Ohkuma M., Taprab Y., Johjima T., Suwanarit P., Sangwanit U., Vongkaluang C., Noparatnaraporn N. and Kudo T. 2005. Fungal community analysis of fungus gardens in termite nests. Microbes Environ. 20: 243-252

    Article  Google Scholar 

  • Müller K. 2005. SeqState: Primer design and sequence statistics for phylogenetic DNA datasets. Appl. Bioinf. 4: 65-69

    Article  Google Scholar 

  • Nobre T., Eggleton P. and Aanen D.K. 2010. Vertical transmission as the key to the colonization of Madagascar by fungus-growing termites? Proc. R. Soc. B 277: 359-365

    Article  CAS  PubMed  Google Scholar 

  • Nylander J.A.A. 2004. MrModeltest v2. distributed by the author, Evolutionary Biology Center, Uppsala University

  • Ohiagu C.E. and Wood T.G. 1979. Grass production and decomposition in Southern Guinea savanna, Nigeria. Oecologia 40: 155-165

    Google Scholar 

  • Oksanen J., Kindt R., Legendre P., O’Hara B., Simpson G.L. and Stevens H.H. 2008. vegan: Community ecology package. R package version 1.11-4. http://vegan.r-forge.r-project.org

  • Otieno N.C. 1964. Contributions to a knowledge of termite fungi in East Africa. Proc. East African Acad. 2: 109-121

    Google Scholar 

  • Otieno N.C. 1968. Further contributions to a knowledge of termite fungi in East Africa. Sydowia 22: 160-165

    Google Scholar 

  • Pegler D.N. 1977. A Preliminary Agaric Flora of East Africa. Lubrecht & Cramer Ltd, London, 620 pp

    Google Scholar 

  • Pomeroy D.E., Bagine R.K. and Darlington J.P.E.C. 1991. Fungus-growing termites in East African savannas. In: African Wildlife: Research and Management (Kayanja F.I.B. and Edroma E.L., Eds), ICSU Press, Paris, pp 41-50

    Google Scholar 

  • R Development Core Team 2008. R: language and environment for statistical computing. R version 2.7.0. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org

  • Rohrmann G.F. 1978. The origin, structure, and nutritional importance of the comb in two species of Macrotermitinae (Insecta, Isoptera). Pedobiol. 18: 89-98

    CAS  Google Scholar 

  • Ronquist F. and Huelsenbeck J.P. 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinf. 19: 1572-1574

    Article  CAS  Google Scholar 

  • Rouland-Lefèvre C. 2000. Symbiosis with fungi. In: Termites: Evolution, Sociality, Symbioses, Ecology (Abe T., Bignell D.E. and Higashi M., Eds), Kluwer Academic Publishers, Dordrecht, pp 289-306

    Google Scholar 

  • Rouland C., Lenoir F. and Lepage M. 1991. The role of the symbiotic fungus in the digestive metabolism of several species of fungus-growing termites. Comp. Biochem. Physiol. A 99: 657-663

    Article  Google Scholar 

  • Rouland-Lefèvre C., Diouf M.N., Brauman A. and Neyra M. 2002. Phylogenetic relationships in Termitomyces (family Agaricaceae) based on the nucleotide sequence of ITS: a first approach to elucidate the evolutionary history of the symbiosis between fungus-growing termites and their fungi. Mol. Phylogenet. Evol. 22: 423-429

    Article  PubMed  CAS  Google Scholar 

  • Sands W.A. 1960. The initiation of fungus comb construction in laboratory colonies of Ancistrotermes guineensis (Silvestri). Insect. Soc. 7: 251-263

    Article  Google Scholar 

  • Sands W.A. 1969. The association of termites and fungi. In: Biology of Termites, vol. 1 (Krishna K. and Weesner F.M., Eds), Academic Press, London, pp 495-524

    Google Scholar 

  • Schuurman G. 2005. Decomposition rates and termite assemblage composition in semiarid Africa. Ecology 86: 1236-1249

    Article  Google Scholar 

  • Shinzato N., Muramatsu M., Watanabe Y. and Matsui T. 2005. Termite-regulated fungal monoculture in fungus combs of a macrotermitine termite Odontotermes formosanus. Zool. Sci. 22: 917-922

    Article  CAS  PubMed  Google Scholar 

  • Sidde Gowda D.K. and Rajagopal D. 1990. Association of Termitomyces spp. with fungus growing termites. Proc. Ind. Acad. Sci. (Anim. Sci.) 99: 311-315

    Article  Google Scholar 

  • Sieber R. 1983. Establishment of fungus comb in laboratory colonies of Macrotermes michaelseni and Odontotermes montanus (Isoptera, Macrotermitinae). Insect. Soc. 30: 204-209

    Article  Google Scholar 

  • Simmons M.P. and Ochoterena H. 2000. Gaps as characters in sequence-based phylogenetic analyses. Syst. Biol. 49: 369-381

    Article  CAS  PubMed  Google Scholar 

  • Swofford D.L. 2001. PAUP* Vers. 4.0b10. Sinauer, Sunderland, MA

  • Tamura K., Dudley J., Nei M. and Kumar S. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24: 1596-1599

    Article  CAS  PubMed  Google Scholar 

  • Taprab Y., Ohkuma M., Johjima T., Maeda Y., Moriya S., Inoue T., Suwanarit P., Noparatnaraporn N. and Kudo T. 2002. Molecular phylogeny of symbiotic Basidiomycetes of fungus-growing termites in Thailand and their relationship with the host. Biosci. Biotechnol. Biochem. 66: 1159-1163

    Article  CAS  PubMed  Google Scholar 

  • Thomas R.J. 1987. Factors affecting the distribution and activity of fungi in the nests of Macrotermitinae. Soil Biol. Biochem. 19: 343-349

    Article  Google Scholar 

  • White T.J., Bruns T., Lee S. and Taylor L. 1990. Amplification and direct sequencing of fungal RNA genes for phylogenetics. In: PCR Protocols. A Guide to Methods and Applications (Innis M.A., Gelfand D.H., Sninsky J.J. and White T.J., Eds), Academic Press, San Diego,CA, pp 315-322

    Google Scholar 

  • Wilfert L., Kaib M., Durka W. and Brandl R. 2006. Differentiation between populations of a termite in eastern Africa: Implications for forest biogeography. J. Biogeogr. 33: 1993-2000

    Article  Google Scholar 

  • Wood T.G. and Thomas R.J. 1989. The mutualistic association between Macrotermitinae and Termitomyces. In: Insect-Fungus Interactions (Wilding N., Hammond P.M. and Webber J.F., Eds), Academic Press, London, pp 69-92

    Google Scholar 

Download references

Acknowledgments

The study was supported by the German Research Foundation (DFG). Zipporah Osiemo was supported by a scholarship of the German Academic Exchange Service (DAAD). We thank Duur K. Aanen for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Marten.

Additional information

Z. B. Osiemo and A. Marten contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Osiemo, Z.B., Marten, A., Kaib, M. et al. Open relationships in the castles of clay: high diversity and low host specificity of Termitomyces fungi associated with fungus-growing termites in Africa. Insect. Soc. 57, 351–363 (2010). https://doi.org/10.1007/s00040-010-0092-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00040-010-0092-3

Keywords