Skip to main content
Log in

Contact geometry and isosystolic inequalities

  • Published:
Geometric and Functional Analysis Aims and scope Submit manuscript

Abstract

A long-standing open problem asks whether a Riemannian metric on the real projective space with the same volume as the canonical metric carries a periodic geodesic whose length is at most π. A contact-geometric reformulation of systolic geometry and the use of canonical perturbation theory allow us to solve a parametric version of this problem: if g s is a smooth, constant-volume deformation of the canonical metric that is not formally trivial, the length of the shortest periodic geodesic of the metric g s attains π as a strict local maximum at s = 0. This result still holds for complex and quaternionic projective spaces as well as for the Cayley plane. Moreover, the same techniques can be applied to show that Zoll Finsler manifolds are the unique smooth critical points of the systolic volume.

Pour résoudre un problème nouveau, nous cherchons toujours à le simplifier par une série de transformations ; mais cette simplification a un terme, car il y a dans tout problème quelque chose d’essentiel, pour ainsi dire, que toute transformation est impuissante à modifier.

Henri Poincaré

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Álvarez-Paiva J.C., Balacheff F.: Optimalité systolique infinitésimale de l’oscillateur harmonique. Séminaire de théorie spectrale et géométrie 27, 11–16 (2009)

    Google Scholar 

  2. J.C. Álvarez-Paiva and A.C. Thompson. Volumes on normed and Finsler spaces. A sampler of Riemann-Finsler geometry, Math. Sci. Res. Inst. Publ., Vol. 50. Cambridge Univ. Press, Cambridge (2004), pp. 1–48. MR2132656 (2006c:53079).

  3. F. Balacheff. Sur la systole de la sphère au voisinage de la métrique standard. Geom. Dedicata, 121 (2006), 61–71. MR2276235 (2007k:53045).

    Google Scholar 

  4. Augustin Banyaga. A note on Weinstein’s conjecture. Proc. Amer. Math. Soc., (3)109 (1990), 855–858. 1021206. (90m:58170)

  5. Berger M.: Du côté de chez pu. Ann. Sci. École Norm. Sup 5(4), 1–44 (1972)

    MATH  Google Scholar 

  6. David E. Blair. Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol. 509. Springer, Berlin (1976). 0467588 (57 #7444).

  7. W.M. Boothby and H.C. Wang. On contact manifolds. Ann. of Math. (2), 68 (1958), 721–734. 0112160 (22 #3015).

  8. Christopher B. Croke. Area and the length of the shortest closed geodesic. J. Differential Geom., (1)27 (1988), 1–21. 918453 (89a:53050).

  9. Alex J. Dragt and John M. Finn. Lie series and invariant functions for analytic symplectic maps. J. Mathematical Phys., (12)17 (1976). 2215–2i27. 0442983 (56 #1358).

  10. Durán C.: A volume comparison theorem for Finsler manifolds. Proc. Am. Math. Soc., 126, 3079–3082 (1998)

    Article  MATH  Google Scholar 

  11. John M. Finn. Lie transforms: a perspective. Local and global methods of nonlinear dynamics (Silver Spring, Md., 1984), Lecture Notes in Phys., Vol. 252, Springer, Berlin (1986), pp. 63–86. 856945 (87m:58055).

  12. Hansjörg Geiges. An introduction to contact topology. Cambridge Studies in Advanced Mathematics, Vol. 109. Cambridge University Press, Cambridge (2008). 2397738 (2008m:57064).

  13. V.L. Ginzburg. New generalizations of Poincaré’s geometric theorem. Funktsional. Anal. i Prilozhen., (2)21 (1987), 16–22. 96.902290 (89f:58057).

  14. M.L. Gromov. A topological technique for the construction of solutions of differential equations and inequalities. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris (1971), pp. 221–225. 0420697 (54 #8709).

  15. V. Guillemin. The Radon transform on Zoll surfaces. Advances in Math., (1)22 (1976), 85–119. MR0426063 (54 #14009).

  16. M. Hutchings. Quantitative embedded contact homology (2010). arXiv:1005. 2260.

  17. René Michel. Problèmes d’analyse géométrique liés à la conjecture de Blaschke. Bull. Soc. Math. France, 101 (1973), 17–69. 0317231 (47 #5778).

    Google Scholar 

  18. J. Moser. Regularization of Kepler’s problem and the averaging method on a manifold. Comm. Pure Appl. Math., 23 (1970), 609–636. 0269931 (42 #4824).

    Google Scholar 

  19. Alexander Nabutovsky and Regina Rotman. The length of a shortest closed geodesic on a 2-dimensional sphere. IMRN, (39) 2002, (2002), 2121–2129. 1903953 (2003d:53062).

  20. Jacob Palis, Jr. and Welington de Melo. Geometric theory of dynamical systems. Springer-Verlag, New York (1982) (An introduction, Translated from the Portuguese by A. K. Manning. 669541 (84a:58004)).

  21. Henri Poincaré. Sur les lignes géodésiques des surfaces convexes. Trans. Amer. Math. Soc., (3)6 (1905), 237–274. 1500710.

  22. P.M. Pu. Some inequalities in certain nonorientable Riemannian manifolds. Pacific J. Math., 2 (1952), 55–71. 14,87e.

    Google Scholar 

  23. Georges Reeb. Sur certaines propriétés topologiques des trajectoires des systèmes dynamiques. Acad. Roy. Belgique. Cl. Sci. Mém. Coll. in 8 °, (9)27 (1952), 64. 0058202 (15,336b).

  24. A.G. Reznikov. The weak Blaschke conjecture for HPn. Dokl. Akad. Nauk SSSR, (2)283 (1985), 308–312. 804123 (87h:53058).

  25. Alexander G. Reznikov. The weak Blaschke conjecture for CPn. Invent. Math., (3)117 (1994), 447–454. 1283726 (95e:53060).

  26. Regina Rotman. The length of a shortest closed geodesic and the area of a 2-dimensional sphere. Proc. Amer. Math. Soc., (10)134 (2006), 3041–3047. 2231630 (2007f:53039).

  27. Stéphane Sabourau. Filling radius and short closed geodesics of the 2-sphere. Bull. S.M.F, (1)132 (2004), 105–136. MR2075918 (2005g:53065).

  28. A.C. Thompson. Minkowski Gometry. Encyclopedia of Math. and its Applications, Vol. 63. Cambridge University Press, Cambridge (1996).

  29. David Tischler. Closed 2-forms and an embedding theorem for symplectic manifolds. J. Differential Geometry, (2)12 (1977), 229–235. 0488108 (58 #7677).

  30. Chiaki Tsukamoto. Infinitesimal Blaschke conjectures on projective spaces. Ann. Sci. École Norm. Sup. (4), (3)14 (1981), 339–356. 644522 (84k:58055).

  31. Alan Weinstein. On the volume of manifolds all of whose geodesics are closed. J. Differential Geometry, 9 (1974), 513–517. 0390968 (52 #11791).

    Google Scholar 

  32. Alan Weinstein. Fourier integral operators, quantization, and the spectra of Riemannian manifolds. Géométrie symplectique et physique mathématique (Colloq. Internat. CNRS, No. 237, Aix-en-Provence, 1974), Éditions Centre Nat. Recherche Sci., Paris (1975). With questions by W. Klingenberg and K. Bleuler and replies by the author, pp. 289–298. 0650990 (58 #31307).

  33. C.T. Yang. Any Blaschke manifold of the homotopy type of CPn has the right volume. Pacific J. Math., (2)151 (1991), 379–394. 1132398 (92m:53062).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. Álvarez Paiva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paiva, J.C.Á., Balacheff, F. Contact geometry and isosystolic inequalities. Geom. Funct. Anal. 24, 648–669 (2014). https://doi.org/10.1007/s00039-014-0250-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00039-014-0250-2

Keywords and phrases

Mathematics Subject Classification (1991)

Navigation