Skip to main content
Log in

Dual VP Classes

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We consider the complexity class ACC 1 and related families of arithmetic circuits. We prove a variety of collapse results, showing several settings in which no loss of computational power results if fan-in of gates is severely restricted, as well as presenting a natural class of arithmetic circuits in which no expressive power is lost by severely restricting the algebraic degree of the circuits. We draw attention to the strong connections that exist between ACC 1 and VP, via connections to the classes CC 1[m] for various m. These results tend to support a conjecture regarding the computational power of the complexity class VP over finite algebras, and they also highlight the significance of a class of arithmetic circuits that is in some sense dual to VP. In particular, these dual-VP classes provide new characterizations of ACC 1 and TC 1 in terms of circuits of semiunbounded fan-in. As a corollary, we show that ACC iCC i for all \({i \geq 1}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agrawal M., Allender E., Datta S. (2000) On TC0, AC0, and Arithmetic Circuits. Journal of Computer and System Sciences 60: 395–421

    Article  MathSciNet  MATH  Google Scholar 

  • E. Allender & V. Gore (1994). A uniform circuit lower bound for the permanent. SIAM Journal on Computing 23, 1026–49.

  • Allender E., Jiao J., Mahajan M., Vinay V. (1998) Non-Commutative Arithmetic Circuits: Depth Reduction and Size Lower Bounds. Theoretical Computer Science 209: 47–86

    Article  MathSciNet  MATH  Google Scholar 

  • Allender E., Reinhardt K., Zhou S. (1999) Isolation, matching, and counting: Uniform and nonuniform upper bounds. Journal of Computer and System Sciences 59(2): 164–181

    Article  MathSciNet  MATH  Google Scholar 

  • Eric Allender, Anna Gál & Ian Mertz (2015). Dual VP Classes. In Proc. 40th International Symposium on Mathematical Foundations of Computer Science (MFCS), number 9235 in Lecture Notes in Computer Science, 14–25. Springer Berlin Heidelberg.

  • Eric Allender & Asa Goodwillie (2015). Arithmetic circuit classes over \({\mathbb{Z}_m}\). Technical Report 15-145, Electronic Colloquium on Computational Complexity (ECCC).

  • Eric Allender & Michal Koucký (2010). Amplifying Lower Bounds by Means of Self-Reducibility. Journal of the ACM 57: 14:1 – 14:36

  • R. Beigel & J. Tarui (1994). On ACC. Computational Complexity 4, 350–366. Special issue on circuit complexity.

  • L. Blum, F. Cucker, M. Shub & S. Smale (1998). Complexity and Real Computation. Springer.

  • A. Borodin, S. A. Cook, P. W. Dymond, W. L. Ruzzo & M. Tompa (1989). Two applications of inductive counting for complementation problems. SIAM Journal on Computing 18, 559–578. See Erratum in SIAM J. Comput. 18, 1283.

  • Harry Buhrman, Richard Cleve, Michal Koucký, Bruno Loff & Florian Speelman (2014). Computing with a full memory: catalytic space. In ACM Symposium on Theory of Computing (STOC), 857–866.

  • Peter Bürgisser (1999) On the Structure of Valiant’s Complexity Classes. Discrete Mathematics & Theoretical Computer Science 3(3): 73–94

    MathSciNet  MATH  Google Scholar 

  • Peter Bürgisser (2000) Cook’s versus Valiant’s hypothesis. Theoretical Computer Science 235(1): 71–88

    Article  MathSciNet  MATH  Google Scholar 

  • Hervé Caussinus, Pierre McKenzie, Denis Thérien, Heribert Vollmer (1998) Nondeterministic NC1 Computation. Journal of Computer and System Sciences 57(2): 200–212

    Article  MathSciNet  MATH  Google Scholar 

  • Suresh Chari, Pankaj Rohatgi, Aravind Srinivasan (1995) Randomness-Optimal Unique Element Isolation with Applications to Perfect Matching and Related Problems. SIAM Journal on Computing 24(5): 1036–1050

    Article  MathSciNet  MATH  Google Scholar 

  • Chiu A., Davida G.I., Litow B. (2001) Division in logspace-uniform NC 1. RAIRO Theoretical Informatics and Applications 35: 259–276

    Article  MathSciNet  MATH  Google Scholar 

  • Corrales-Rodrigáñez Capi, Schoof René (1997) The support problem and its elliptic analogue. Journal of Number Theory 64(2): 276–290

    Article  MathSciNet  MATH  Google Scholar 

  • Gabber Ofer, Galil Zvi (1981) Explicit Constructions of Linear-Sized Superconcentrators. Journal of Computer and System Sciences 22(3): 407–420

    Article  MathSciNet  MATH  Google Scholar 

  • Anna Gál (1995). Semi-Unbounded Fan-In Circuits: Boolean vs. Arithmetic. Proceedings of the Tenth Annual Structure in Complexity Theory Conference, Minneapolis, Minnesota, USA, June 19-22, 1995 82–87.

  • Gál Anna, Wigderson Avi (1996) Boolean complexity classes vs. their arithmetic analogs. Random Struct. Algorithms 9(1-2): 99–111

    Article  MathSciNet  MATH  Google Scholar 

  • Michael Hahn, Andreas Krebs, Klaus-Jörn Lange & Michael Ludwig (2015). Visibly Counter Languages and the Structure of NC1. In Symposium on Mathematical Foundations of Computer Science (MFCS), number 9235 in Lecture Notes in Computer Science, 384–394. Springer.

  • Kristoffer Arnsfelt Hansen & Michal Koucký (2010). A New Characterization of ACC0 and Probabilistic CC0. Computational Complexity 19(2), 211–234.

  • William Hesse, Eric Allender & David A. Mix Barrington (2002). Uniform Constant-Depth Threshold Circuits for Division and Iterated Multiplication. Journal of Computer and System Sciences 65, 695–716.

  • Immerman N., Landau S. (1995) The Complexity of Iterated Multiplication. Information and Computation 116: 103–116

    Article  MathSciNet  MATH  Google Scholar 

  • Russell Impagliazzo & David Zuckerman (1989). How to Recycle Random Bits. In IEEE Symposium on Foundations of Computer Science (FOCS), 248–253.

  • Pascal Koiran, Sylvain Perifel (2011) Interpolation in Valiant’s Theory. Computational Complexity 20(1): 1–20

    Article  MathSciNet  MATH  Google Scholar 

  • Guillaume Malod, Natacha Portier (2008) Characterizing Valiant’s algebraic complexity classes. J. Complexity 24(1): 16–38

    Article  MathSciNet  MATH  Google Scholar 

  • Cristopher Moore, Denis Thérien, François Lemieux, Joshua Berman & Arthur Drisko (2000). Circuits and Expressions with Nonassociative Gates. Journal of Computer and System Sciences 60(2), 368–394.

  • Reif J., Tate S. (1992) On threshold circuits and polynomial computation. SIAM Journal on Computing 21: 896–908

    Article  MathSciNet  MATH  Google Scholar 

  • Reinhardt K., Allender E. (2000) Making Nondeterminism Unambiguous. SIAM Journal on Computing 29: 1118–1131

    Article  MathSciNet  MATH  Google Scholar 

  • R. Smolensky (1987). Algebraic Methods in the Theory of Lower Bounds for Boolean Circuit Complexity. In ACM Symposium on Theory of Computing (STOC), 77–82.

  • Straubing H. (1994) Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser, Boston

    Book  MATH  Google Scholar 

  • Thérien Denis (1994) Circuits constructed with MOD q gates cannot compute “AND” in sublinear size. Computational Complexity 4(4): 383–388

    Article  MathSciNet  MATH  Google Scholar 

  • Toda S. (1991) PP Is as Hard as the Polynomial-Time Hierarchy. SIAM Journal on Computing 20: 865–877

    Article  MathSciNet  MATH  Google Scholar 

  • L.G. Valiant (1979). Completeness classes in algebra. In Proc. 11th ACM STOC, 249–261.

  • Valiant L.G., Skyum S., Berkowitz S., Rackoff C. (1983) Fast parallel computation of polynomials using few processors. SIAM Journal on Computing 12(4): 641–644

    Article  MathSciNet  MATH  Google Scholar 

  • Venkateswaran H. (1991) Properties That Characterize LOGCFL. Journal of Computer and System Sciences 43: 380–404

    Article  MathSciNet  MATH  Google Scholar 

  • V Vinay (1991). Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In Proceedings of 6th Structure in Complexity Theory Conference, 270–284.

  • H. Vollmer (1999). Introduction to Circuit Complexity: A Uniform Approach. Springer-Verlag New York Inc.

  • J. von zur Gathen (1993). Parallel linear algebra. In Synthesis of Parallel Algorithms, J. Reif, editor, 574–615. Morgan Kaufmann.

  • William P Wardlaw (1994). Matrix representation of finite fields. Mathematics Magazine 289–293.

  • Williams Ryan (2014) Nonuniform ACC circuit lower bounds. Journal of the ACM 61(1): 2

    Article  MathSciNet  MATH  Google Scholar 

  • Xylouris T. (2011) On the least prime in an arithmetic progression and estimates for the zeros of Dirichlet L-functions. Acta Arithmetica 150: 65–91

    Article  MathSciNet  MATH  Google Scholar 

  • Andrew Chi-Chih Yao (1990). On ACC and Threshold Circuits. In IEEE Symposium on Foundations of Computer Science (FOCS), 619–627.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Allender.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Allender, E., Gál, A. & Mertz, I. Dual VP Classes. comput. complex. 26, 583–625 (2017). https://doi.org/10.1007/s00037-016-0146-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00037-016-0146-7

Keywords

Subject classification

Navigation