Skip to main content
Log in

HQ-finGAN: High-Quality Synthetic Fingerprint Generation Using GANs

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Artificial fingerprint synthesis can broaden the opportunity for researchers by generating a large number of realistic synthetic fingerprints without having to worry about legal issues or privacy concerns. This paper proposes StyleGAN2 and CycleGAN based dual generative adversarial networks (GAN) system, in which StyleGAN2 generates distinct fingerprint skeletons from preprocessed data and CycleGAN transforms these skeletons into realistic fingerprints. This model can generate high-quality 256 by 256 fingerprints that can be turned into a variety of realistic fingerprint styles. Synthesized fingerprints from this model also retain features of real fingerprints that can be used in the related search system. Experimentation of the model includes visual image quality, quantitative image quality, distinctiveness test, and human perception test. The proposed model can produce more realistic high-quality fingerprints in large quantity as compared to previously reported GAN-based systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The dataset generated during the current study is available in the figshare repository, https://doi.org/10.6084/m9.figshare.16628413.v1.

Code Availability

The code and models that support the findings of this study are available upon request.

References

  1. M.M. Ali, V.H. Mahale, P. Yannawar, A. Gaikwad, Overview of fingerprint recognition system, in: Proceedings of the International Conference on Electrical, Electronics, and Optimization Techniques, Chennai, India, pp. 1334–1338 (2016). https://doi.org/10.1109/ICEEOT.2016.7754900

  2. A.H. Ansari, Generation and storage of large synthetic fingerprint database. ME Thesis, (2011) https://dsl.cds.iisc.ac.in/thesis/afzal.pdf

  3. M. Attia, M.H. Attia, J. Iskander, K. Saleh, D. Nahavandi, A. Abobakr, M. Hossny, S. Nahavandi, Fingerprint synthesis via latent space representation, in: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Bari, Italy, pp. 1855–1861 (2019). https://doi.org/10.1109/SMC.2019.8914499

  4. P. Bontrager, A. Roy, J. Togelius, N. Memon, A. Ross, Deepmasterprints: generating masterprints for dictionary attacks via latent variable evolution, in: Proceedings of the IEEE International Conference on Biometrics Theory, Applications and Systems, California, USA, pp. 1–9 (2018). https://doi.org/10.1109/BTAS.2018.8698539

  5. K. Cao, A. Jain, Fingerprint synthesis: evaluating fingerprint search at scale, in: Proceedings of the IEEE International Conference on Biometrics, Gold Coast, QLD, Australia, pp. 31–38 (2018). https://doi.org/10.1109/ICB2018.2018.00016

  6. R. Cappelli, D. Maio, D. Maltoni, Synthetic fingerprint-database generation, in: Proceedings of the International Conference on Pattern Recognition, Quebec City, Canada, vol. 3, pp. 744–747 (2002). https://doi.org/10.1109/ICPR.2002.1048096

  7. S. Chen, S. Chang, Q. Huang, J. He, H. Wang, Q. Huang, Svm-based synthetic fingerprint discrimination algorithm and quantitative optimization strategy. PLoS ONE 9(10), e111,099 (2014). https://doi.org/10.1371/journal.pone.0111099

    Article  Google Scholar 

  8. V. Evdokimova, M. Petrov, M. Klyueva, N. Firsov, S. Bibikov, R. Skidanov, S. Popov, A. Nikonorov, Study of gan-based image reconstruction for diffractive optical systems, in: Proceedings of the International Conference on Information Technology and Nanotechnology, pp. 1–4 (2020). https://doi.org/10.1109/ITNT49337.2020.9253168

  9. M.A. Fahim, H.Y. Jung, A lightweight GAN network for large scale fingerprint generation. IEEE Access 8, 92918–92928 (2020). https://doi.org/10.1109/ACCESS.2020.2994371

    Article  Google Scholar 

  10. C. Gottschlich, S. Huckemann, Separating the real from the synthetic: minutiae histograms as fingerprints of fingerprints. IET Biom. 3(4), 291–301 (2014)

    Article  Google Scholar 

  11. L. Hong, Y. Wan, A. Jain, Fingerprint image enhancement: algorithm and performance evaluation. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 777–789 (1998). https://doi.org/10.1109/34.709565

    Article  Google Scholar 

  12. P. Isola, J.Y. Zhu, T. Zhou, A.A. Efros, Image-to-image translation with conditional adversarial networks, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii, USA, pp. 1125–1134 (2017). https://doi.org/10.1109/CVPR.2017.632

  13. A.K. Jain, A. Ross, S. Pankanti, Biometrics: a tool for information security. IEEE Trans. Inf. Forensics Secur. 1(2), 125–143 (2006). https://doi.org/10.1109/TIFS.2006.873653

    Article  Google Scholar 

  14. T. Karras, S. Laine, T. Aila, A style-based generator architecture for generative adversarial networks, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, pp. 4401–4410 (2019). https://doi.org/10.1109/CVPR.2019.00453

  15. T. Karras, S. Laine, M. Aittala J., Hellsten, J. Lehtinen, T. Aila, Analyzing and improving the image quality of stylegan, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, USA, pp. 8110–8119 (2020). https://doi.org/10.1109/CVPR42600.2020.00813

  16. X. Li, Z. Du, Y. Huang, Z. Tan, A deep translation (GAN) based change detection network for optical and sar remote sensing images. J. Photogramm. Remote Sens. 179, 14–34 (2021). https://doi.org/10.1016/j.isprsjprs.2021.07.007

    Article  Google Scholar 

  17. C. Lin, A. Kumar, Matching contactless and contact-based conventional fingerprint images for biometrics identification. IEEE Trans. Image Process. 27(4), 2008–2021 (2018). https://doi.org/10.1109/TIP.2017.2788866

    Article  MathSciNet  MATH  Google Scholar 

  18. D. Maltoni, D. Maio, A.K. Jain, S. Prabhakar, Handbook of Fingerprint Recognition (Springer, Berlin, 2009)

    Book  Google Scholar 

  19. S. Minaee, A. Abdolrashidi, Finger-GAN: generating realistic fingerprint images using connectivity imposed gan (2018). arXiv preprint arXiv:1812.10482

  20. Neurotechnology, VeriFinger SDK, VeriFinger fingerprint recognition technology, algorithm and SDK for PC, smartphones and Web (2022) https://www.neurotechnology.com/verifinger.html Accessed June 10, (2022)

  21. Novetta Biosynthetic Software (2014) https://www.novetta.com/wp-content/uploads/2014/11/NOVBiosyntheticsOverview2.pdf

  22. E. Tabassi, Nfiq 2.0: Nist fingerprint image quality. NISTIR 8034 (2016)

  23. The Forensic Use of Bioinformation: Ethical Issues Jahrbuch für Wissenschaft und Ethik 13(1):419–430. (2008) https://doi.org/10.1515/9783110196832.3.419

  24. Z. Wang, E.P. Simoncelli, A.C. Bovik, Multiscale structural similarity for image quality assessment, in: Proceedings of the Thirty-Seventh Asilomar Conference on Signals, Systems & Computers, Pacific Grove, CA, USA, pp. 1398–1402 (2003). https://doi.org/10.1109/ACSSC.2003.1292216

  25. A.V. Wyzykowski, M. Segundo, R. de Paula Lemes, Level three synthetic fingerprint generation, in: Proceedings of the International Conference on Pattern Recognition, Milan, Italy, pp. 9250–9257 (2021). https://doi.org/10.1109/ICPR48806.2021.9412304

  26. Q. Zhao, L. Zhang, D. Zhang, N. Luo, Direct pore matching for fingerprint recognition, in: Proceedings of the International conference on Biometrics, Alghero, Italy, pp. 597–606 (2009). https://doi.org/10.1007/978-3-642-01793-3_61

  27. Q. Zhao, A.K. Jain, N.G. Paulter, M. Taylor, Fingerprint image synthesis based on statistical feature models, in: Proceedings of the IEEE Fifth International Conference on Biometrics: Theory, Applications and Systems, Arlington, Virginia, USA, pp. 23–30 (2012). https://doi.org/10.1109/BTAS.2012.6374554

  28. J.Y. Zhu, T. Park, P. Isola, A.A. Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, pp. 2223–2232 (2017). https://doi.org/10.1109/ICCV.2017.244

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Mahbubur Rahman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Consent to Participate

Consent was obtained from all individual participants included in the human perception test.

Consent for Publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sams, A., Shomee, H.H. & Rahman, S.M.M. HQ-finGAN: High-Quality Synthetic Fingerprint Generation Using GANs. Circuits Syst Signal Process 41, 6354–6369 (2022). https://doi.org/10.1007/s00034-022-02089-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02089-1

Keywords

Navigation