Skip to main content
Log in

Manifold Separation-Based DOA Estimation for Nonlinear Arrays via Compressed Super-Resolution of Positive Sources

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Manifold separation technique plays an important role in array modeling and signal processing for arbitrary arrays. By utilizing this technique, the atomic norm minimization (ANM) methods can be extended to the nonlinear arrays for DOA estimation via the generalized line spectral estimation approach. However, such an approach results in a high computational burden for the large-scale arrays. In this paper, a low-dimensional semidefinite programming (SDP) implementation to the coarray manifold separation atomic norm minimization (CMS-ANM) is proposed for a class of nonlinear arrays based on the compressed super-resolution of positive sources. The theoretical guarantee of the proposed SDP implementation for the exact recovery is presented, and the CMS-ANM-based low-complexity DOA estimation method is developed. The simulation results validate the theoretical analysis and demonstrate the satisfying trade-off for the performance and complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no data sets were generated or analyzed during the current study.

Notes

  1. The code can be found at github.com/panda-1982/CMS-ANM.

References

  1. F. Belloni, A. Richter, V. Koivunen, DOA estimation via manifold separation for arbitrary array structures. IEEE Trans. Signal Process. 55(10), 4800–4810 (2007). https://doi.org/10.1109/TSP.2007.896115

    Article  MathSciNet  MATH  Google Scholar 

  2. V. Chandrasekaran, M.I. Jordan, Computational and statistical tradeoffs via convex relaxation. Proc. Natl. Acad. Sci. 110(13), 1181–1190 (2013). https://doi.org/10.1073/pnas.1302293110

    Article  MathSciNet  MATH  Google Scholar 

  3. P. Chen, Z. Chen, Z. Cao, A new atomic norm for DOA estimation with gain-phase errors. IEEE Trans. Signal Process. 68, 4293–4306 (2020). https://doi.org/10.1109/TSP.2020.3010749

    Article  MathSciNet  Google Scholar 

  4. T. Chen, L. Shi, L. Guo, Gridless direction of arrival estimation exploiting sparse linear array. IEEE Signal Process. Lett. 27, 1625–1629 (2020). https://doi.org/10.1109/LSP.2020.3021276

    Article  Google Scholar 

  5. Y. Chi, M..D.. Costa, Harnessing sparsity over the continuum: atomic norm minimization for superresolution. IEEE Signal Process. Mag. 37(2), 39–57 (2020). https://doi.org/10.1109/MSP.2019.2962209

    Article  Google Scholar 

  6. R. Cohen, Y.C. Eldar, Sparse array design via fractal geometries. IEEE Trans. Signal Process. 68, 4797–4812 (2020). https://doi.org/10.1109/TSP.2020.3016772

    Article  MathSciNet  Google Scholar 

  7. M. Costa, V. Koivunen, Array processing in the face of nonidealities. Acad. Press Libr. Signal Process. 3, 819–857 (2014). https://doi.org/10.1016/B978-0-12-411597-2.00019-9

    Article  Google Scholar 

  8. M. Costa, A. Richer, V. Koivunen, DOA and polarization estimation for arbitrary array configurations. IEEE Trans. Signal Process. 60(5), 2330–2343 (2012). https://doi.org/10.1109/TSP.2012.2187519

    Article  MathSciNet  MATH  Google Scholar 

  9. M. Costa, A. Richter, V. Koivunen, Unified array manifold decomposition based on spherical harmonics and 2-D Fourier basis. IEEE Trans. Signal Process. 55(9), 4634–4645 (2010). https://doi.org/10.1109/TSP.2010.2050315

    Article  MathSciNet  MATH  Google Scholar 

  10. M.D. Costa, Y. Chi, Compressed super-resolution of positive sources. IEEE Signal Process. Lett. 13, 947–960 (2021). https://doi.org/10.1109/LSP.2020.3045343

    Article  Google Scholar 

  11. M. Coste: An introduction to semialgebraic geometry. Institut de Recherche Mathematique de Rennes pp. 819–857 (2002) https://perso.univ-rennes1.fr/michel.coste/polyens/SAG.pdf

  12. Y. De Castro, F. Gamboa, D. Henrion, J.B. Lasserre, Exact solutions to super resolution on semi-algebraic domains in high dimensions. IEEE Trans. Inf. Theory 63(1), 621–630 (2017). https://doi.org/10.1109/TIT.2016.2619368

    Article  MATH  Google Scholar 

  13. M. Doron, E. Doron, Wavefield modeling and array processing, part I, part II, and part III. IEEE Trans. Signal Process. 42(10), 2549–2580 (1994). https://doi.org/10.1109/78.324722

    Article  Google Scholar 

  14. V. Duval, G. Peyre, Exact support recovery for sparse spikes deconvolution. Found. Comput. Math. 15(5), 1315–1355 (2015). https://doi.org/10.1007/s10208-014-9228-6

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Eftekhari, J. Tanner, A. Thompson, B. Toader, Sparse non-negative super-resolution—simplified and stabilised. Appl. Comput. Harmonic Anal. 50, 216–280 (2021). https://doi.org/10.1016/j.acha.2019.08.004

    Article  MathSciNet  MATH  Google Scholar 

  16. M. Grant, S. Boyd: Cvx:matlab software for disciplined convex programming, version 2.0 beta (2013) http://cvxr.com/cvx

  17. R. Heckel, M. Soltanolkotabi, Generalized line spectral estimation via convex optimization. IEEE Trans. Inf. Theory 64(6), 4001–4023 (2018). https://doi.org/10.1109/TIT.2017.2757003

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Karlin, W. Studden, Tchebycheff Systems: With Applications in Analysis and Statistics. New York (1967). https://doi.org/10.2307/1401807

  19. Y. Li, Y. Chi, Off-the-grid line spectrum denoising and estimation with multiple measurement vectors. IEEE Trans. Signal Process. 64(5), 1257–1269 (2016). https://doi.org/10.1109/TSP.2015.2496294

    Article  MathSciNet  MATH  Google Scholar 

  20. C.L. Liu, P. Vaidyanathan, Super nested arrays: linear sparse arrays with reduced mutual coupling—part I: fundamentals. IEEE Trans. Signal Process. 64(15), 3997–4012 (2016). https://doi.org/10.1109/TSP.2016.2558159

    Article  MathSciNet  MATH  Google Scholar 

  21. K. Mahata, M. Hyder, Grid-less TV norm minimization for DOA estimation. Signal Process. 132, 146–155 (2017). https://doi.org/10.1016/j.sigpro.2016.09.018

    Article  Google Scholar 

  22. K. Mahata, M. Hyder, Fast frequency estimation with prior information. IEEE Trans. Signal Process. 66(1), 264–273 (2018). https://doi.org/10.1109/TSP.2017.2764865

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Qiao, P. Pal, Gridless line spectrum estimation and low-rank Toeplitz matrix compression using structured samplers: a regularization-free approach. IEEE Trans. Signal Process. 65(9), 2221–2236 (2017). https://doi.org/10.1109/TSP.2017.2659644

    Article  MathSciNet  MATH  Google Scholar 

  24. A.G. Raj, J. McClellan, Single snapshot super-resolution DOA estimation for arbitrary array geometries. IEEE Signal Process. Lett. 26(1), 119–123 (2019). https://doi.org/10.1109/LSP.2018.2881927

    Article  Google Scholar 

  25. F. Roemer, T. Hotz, G.D. Galdo: Grid-free direction-of-arrival estimation with compressed sensing and arbitrary antenna arrays, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018). https://doi.org/10.1109/ICASSP.2018.8462501

  26. M. Rubsamen, A.B. Gershman, Sparse array design for azimuthal direction-of-arrival estimation. IEEE Trans. Signal Process. 59(12), 5957–5969 (2011). https://doi.org/10.1109/TSP.2011.2168222

    Article  MathSciNet  MATH  Google Scholar 

  27. S. Sedighi, B. Rao, B. Ottersten, An asymptotically efficient weighted least squares estimator for co-array-based DOA estimation. IEEE Trans. Signal Process. 68, 589–604 (2020). https://doi.org/10.1109/TSP.2019.2954506

    Article  MathSciNet  Google Scholar 

  28. S. Semper, F. Romer, ADMM for ND line spectral estimation using grid-free compressive sensing from multiple measurements with applications to DOA estimation, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2019), pp. 4130–4134. https://doi.org/10.1109/ICASSP.2019.8683697

  29. C. Steffens, M. Pesavento, M.E. Pfetsch, A compact formulation for the \(\ell _{2,1}\) mixed-norm minimization problem. IEEE Trans. Signal Process. 66(6), 1483–1497 (2018). https://doi.org/10.1109/TSP.2017.2788431

    Article  MathSciNet  MATH  Google Scholar 

  30. Z. Tan, Y.C. Eldar, A. Nehorai, Direction of arrival estimation using co-prime arrays: a super resolution viewpoint. IEEE Trans. Signal Process. 62(21), 5565–5576 (2014). https://doi.org/10.1109/TSP.2014.2354316

    Article  MathSciNet  MATH  Google Scholar 

  31. G. Tang, B.N. Bhaskar, P. Shah, B. Recht, Compressed sensing off the grid. IEEE Trans. Inf. Theory 59(11), 7465–7490 (2013). https://doi.org/10.1109/TIT.2013.2277451

    Article  MathSciNet  MATH  Google Scholar 

  32. K.C. Toh, R.H. Tutucu, M.J. Todd, On the implementation of SDPT3 (version 3.1)—a MATLAB software package for semidefinite-quadratic-linear programming, in IEEE International Symposium on Computer Aided Control Systems Design (2004). https://doi.org/10.1109/CACSD.2004.1393891

  33. L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996). https://doi.org/10.1137/1038003

    Article  MathSciNet  MATH  Google Scholar 

  34. F. Wang, Z. Tian, G. Leus, J. Fang, Direction of arrival estimation of wideband sources using sparse linear arrays. IEEE Trans. Signal Process. (2021). https://doi.org/10.1109/TSP.2021.3094718

    Article  MathSciNet  Google Scholar 

  35. Y. Wang, Y. Zhang, Z. Tian, G. Leus, Super-resolution channel estimation for arbitrary arrays in hybrid millimeter-wave massive mimo systems. IEEE J. Sel. Top. Signal Process. 13, 947–960 (2019). https://doi.org/10.1109/JSTSP.2019.2937632

    Article  Google Scholar 

  36. Z. Wei, W. Wang, F. Dong, Q. Liu, Gridless one-bit direction-of-arrival estimation via atomic norm denoising. IEEE Commun. Lett. 24(10), 2177–2181 (2020). https://doi.org/10.1109/LCOMM.2020.3000755

    Article  Google Scholar 

  37. X. Wu, W. Zhu, J. Yan, A toeplitz covariance matrix reconstruction approach for direction-of-arrival estimation. IEEE Trans. Veh. Technol. 66(9), 8223–8237 (2017). https://doi.org/10.1109/TVT.2017.2695226

    Article  Google Scholar 

  38. F. Xi, Y. Xiang, S. Chen, A. Nehorai, Gridless parameter estimation for one-bit mimo radar with time-varying thresholds. IEEE Trans. Signal Process. 68, 1048–1063 (2020). https://doi.org/10.1109/TSP.2020.2970343

    Article  MathSciNet  Google Scholar 

  39. Z. Yang, L. Xie, P. Stoica, Vandermonde decomposition of multilevel toeplitz matrices with application to multidimensional super-resolution. IEEE Trans. Inf. Theory 62(6), 3685–3701 (2016). https://doi.org/10.1109/tit.2016.2553041

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. Yang, L. Xie, C. Zhang, A discretization-free sparse and parametric approach for linear array signal processing. IEEE Trans. Signal Process. 62(19), 4959–4973 (2014). https://doi.org/10.1109/TSP.2014.2339792

    Article  MathSciNet  MATH  Google Scholar 

  41. Y. Zhang, G. Zhang, X. Wang: Array covariance matrix-based atomic norm minimization for off-grid coherent direction-of-arrival estimation, in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2017), pp. 1503–1507. https://doi.org/10.1109/ICASSP.2017.7952746

  42. Z. Zhang, Y. Wang, Z. Tian, Efficient two-dimensional line spectrum estimation based on decoupled atomic norm minimization. Signal Process. 163, 95–106 (2019). https://doi.org/10.1016/j.sigpro.2019.04.024

    Article  Google Scholar 

  43. C. Zhou, Y. Gu, X. Fan, Z. Shi, G. Mao, Y.D. Zhang, Direction-of-arrival estimation for coprime array via virtual array interpolation. IEEE Trans. Signal Process. 66(22), 5956–5971 (2018). https://doi.org/10.1109/TSP.2018.2872012

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Zhuang, C. Duan, W. Wang, Z. Chen, Joint estimation of azimuth and elevation via manifold separation for arbitrary array structures. IEEE Trans. Veh. Technol. 67(7), 5585–5596 (2018). https://doi.org/10.1109/TVT.2018.2801785

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61601402) and the Natural Science Foundation of Jiangsu Province (Grant No. BK20160477).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pan Jie.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Condition 1

Provided that there exists another atomic decomposition

$$\begin{aligned} \mathbf {r}=\sum _{k=1}^K{\mathbf {a}(\theta _k )}{\mathbf {s}'_{k}}+\sum _{l=1}^L{\mathbf {a}(\hat{\theta }_l )}{\hat{\mathbf {s}}_{l}} \end{aligned}$$
(A1)

such that it is also optimal to (10), where \(\mathbf {a}(\theta )\in \mathcal {M}\), \(\mathbf {s}'_{k} \ge 0\), \({\hat{\mathbf {s}}}_{l} \ge 0\) and \(\{{{\theta }_{k}}\} \bigcap \{{{\hat{\theta }}_{l}}\}=\emptyset \), which gives

$$\begin{aligned} \begin{aligned} \sum _{k=1}^K{\mathbf {a}(\theta _k )}({\mathbf {s}'_{k}}-\mathbf {s}_{k})+\sum _{l=1}^L{\mathbf {a}(\hat{\theta }_l )}{\hat{\mathbf {s}}_{l}}=0 \end{aligned} \end{aligned}$$
(A2)

followed from the definition of (10), where \(\left\{ \theta _k,{\mathbf {s}_{k}}\right\} \) is the truth atomic decomposition.

According to the assumption in Condition 1, there exists the nonnegative polynomial \(q(\theta )=\mathbf {Q}^{\text {H}}_{\star }\bar{\mathbf {G}d}_{2M}(\theta )\) such that it vanishes only on \(\left\{ \theta _k \right\} _{k=1,\ldots ,K}\), and thus there is the polynomial

$$\begin{aligned} \begin{aligned} q'(\theta )&=q(\theta )/\left\| \mathbf {Gd}_M(\theta ) \right\| _F^2\\&=\mathbf {Q}^{\text {H}}_{\star }\mathbf {a}(\theta ),\mathbf {a}(\theta )\in \mathcal {M}\\ \end{aligned} \end{aligned}$$
(A3)

satisfying

$$\begin{aligned} \begin{aligned} \left\{ \begin{aligned}&q'({\theta _{k}})=0,\forall k=1,2,\ldots ,K \\&q'({\theta }) > 0,\forall \theta \ne {\theta _{k}}, \\ \end{aligned} \right. \end{aligned} \end{aligned}$$
(A4)

which implies

$$\begin{aligned} \begin{aligned}&\mathbf {Q}^{\text {H}}_{\star }\left\{ \sum _{k=1}^K{\mathbf {a}(\theta _k )}({\mathbf {s}'_{k}}-\mathbf {s}_{k})+\sum _{l=1}^L{\mathbf {a}(\hat{\theta }_l )}{\hat{\mathbf { s}}_{l}}\right\} \\&\quad =\sum _{k=1}^K q'(\theta _k)({\mathbf {s}'_{k}}-\mathbf {s}_{k})+\sum _{l=1}^L q'(\hat{\theta }_l){{\hat{\mathbf {s}}}_{l}}\\&\quad =\sum _{l=1}^L q'(\hat{\theta }_l){{\hat{\mathbf {s}}}_{l}}\\&\quad =0.\\ \end{aligned} \end{aligned}$$
(A5)

Since \(q'({\theta }) > 0\) on \(\left\{ \hat{\theta }_{l}\right\} \), it can be concluded that \({{\hat{\mathbf {s}}}_{l}}=0\) for any \(l \in [1,L]\), followed from (A5), and thus, the "another" atomic optimal decomposition can only have the form

$$\begin{aligned} \mathbf {r}=\sum _{k=1}^K{\mathbf {a}(\theta _k )}{\mathbf {s}'_{k}}. \end{aligned}$$
(A6)

Let \(\mathbf {A}(\varvec{\Theta })=[\mathbf {a}(\theta _1),\ldots ,\mathbf {a}(\theta _K)]\) such that

(A7)

it implies that \(\mathbf {A}(\varvec{\Theta })\) is full rank, followed from the assumption in Condition 1, i.e., \(\bar{\mathbf {G}D}_{2M}(\varvec{\Theta })\) is full rank.

Note that combining (A2) and (A6) gives

$$\begin{aligned} \begin{aligned} \sum _{k=1}^K{\mathbf {a}(\theta _k )}({\mathbf {s}'_{k}}-\mathbf {s}_{k})=0, \end{aligned} \end{aligned}$$
(A8)

which implies \({\mathbf {s}'_{k}}=\mathbf {s}_{k}\), because \(\mathbf {A}(\varvec{\Theta })\) is full rank by assumption. The atomic decomposition in (4) can be retrieved uniquely by solving (10) if Condition 1 is to be satisfied.

Appendix B Proof of Theorem 1

From the constraint in (11), it gives

$$\begin{aligned} \begin{aligned}&{{\mathbf {a}^{\text {H}}(\theta )}}\varvec{\Omega }\le 1, \forall \mathbf {a}(\theta )\in \mathcal {M}\\&\quad \Leftrightarrow \mathbf {d}^\text {H}_M({{\theta } })\mathbf {G}^\text {H}\mathbf {Gd}_M({{\theta } })-\mathbf {d}^\text {H}_{2M}(\theta )\bar{\mathbf {G}}^\text {H}\varvec{\Omega } \ge 0. \end{aligned} \end{aligned}$$
(B9)

According to Fejer–Riesz theorem, the nonnegative univariate polynomial is always sum-of-squares, i.e., there exists a positive-semidefinite matrix \(\mathbf {P}\succeq 0\) such that

$$\begin{aligned} \mathbf {d}^\text {H}_M({{\theta } })\mathbf {G}^\text {H}\mathbf {Gd}_M({{\theta } })-\mathbf {d}^\text {H}_{2M}(\theta )\bar{\mathbf {G}}^\text {H}\varvec{\Omega } =\mathbf {d}^\text {H}_M({{\theta } })\mathbf {P}\mathbf {d}_M({{\theta } }), \end{aligned}$$
(B10)

which implies

$$\begin{aligned} \begin{aligned}&\sum \limits _{m}\text {Tr}({{\Theta }_{m}}\mathbf {P})z^m+\sum \limits _{m}\bar{\mathbf {g}}^{\text {H}}_{m}\varvec{\Omega }z^m=\sum \limits _{m}\text {Tr}({{\Theta }_{m}}{{\mathbf {G}^{\text {H}}}}\mathbf {G})z^m\\&\quad \Leftrightarrow \text {Tr}({{\Theta }_{m}}\mathbf {P})+\bar{\mathbf {g}}^{\text {H}}_{m}\varvec{\Omega }=\text {Tr}({{\Theta }_{m}}{{\mathbf {G}^{\text {H}}}}\mathbf {G}), \quad m\in \mathcal {H}\\ \end{aligned} \end{aligned}$$
(B11)

with \(z=e^{-j\theta }\), i.e., the SDP implementation in (14) shares the identical feasible solution set with (11), and thus results the same solution since the same objective.

Appendix C Proof of Theorem 3

Note that the line spectral atomic set \(\mathcal {A}\) in (5) can be described as a semi-algebraic set \(\mathbf {Z}_M=\frac{1}{\sqrt{2M+1}}[z_1, \ldots , z_{2M+1}]\) that

(C12)

According to the Tarski–Seidenberg principle (Corollary 2.4 in [11]) and (C12), the array manifold \(\mathcal {B}=\left\{ \mathbf {Td}_M(\theta ) \mid \mathbf {d}_M(\theta ) \in \mathcal {A} \right\} \) can be described as a compact semi-algebraic set

$$\begin{aligned} \begin{aligned} \mathcal {E}(g)&=\left\{ \mathbf {b} \in \mathbb {C}^{N} \mid g_v(\mathbf {b}) = 0, v=1,2, \ldots , \chi \right\} \end{aligned} \end{aligned}$$
(C13)

as well, where \(\left\{ g_v(\mathbf {b}) \right\} \) are the polynomials on \(\mathbf {b}\). And thus, any polynomial \(f(\mathbf {b}) \ge 0\) with \(\mathbf {b} \in \mathcal {B}\) is the sum-of-squares (SOS) polynomial by means of SOS relaxation [12], i.e., there exits \(\mathbf {P }\succeq 0\) and the integer \(\alpha \ge 1\) such that

$$\begin{aligned} \begin{aligned} f(\mathbf {b})={\mathbf {b}_{\alpha }^\text {H}}\mathbf {P}\mathbf {b}_{\alpha }, \end{aligned} \end{aligned}$$
(C14)

where \(\mathbf {b}=[b_1,\ldots ,b_N]\), \(\mathbf {b}_{\alpha }\) is the vector of monomials

(C15)

from the assumptions in Theorem 3. Let the polynomial \(f(\mathbf {b})=\mathbf {d}^\text {H}_M({{\theta } })\mathbf {G}^\text {H}\mathbf {Gd}_M({{\theta } })-\mathbf {d}^\text {H}_{2M}(\theta )\bar{\mathbf {G}}^\text {H}\varvec{\Omega }\) with \(\mathbf {b} \in \mathcal {B}\), it gives

$$\begin{aligned} \begin{aligned}&\mathbf {a}^{\text {H}}(\theta )\varvec{\Omega } \le 1, \forall \mathbf {a}(\theta )\in \mathcal {M}\\&\quad \Leftrightarrow f(\mathbf {b}) \ge 0\\&\quad \Rightarrow f(\mathbf {b})=\mathbf {d}^\text {H}_{M\alpha }({{\theta } })\mathbf {T}_{(\alpha )}^\text {H}\mathbf {P}\mathbf {T}_{(\alpha )}\mathbf {d}_{M\alpha }({{\theta } }),\\ \end{aligned} \end{aligned}$$
(C16)

according to (C14), which implies

$$\begin{aligned} \begin{aligned}&{{\mathbf {a}^{\text {H}}(\theta )}}\varvec{\Omega } \le 1, \forall \mathbf {a}(\theta )\in \mathcal {M}\\&\Leftrightarrow \left\{ \begin{aligned}&\text {Tr}({{\Theta }_{m}}{{\mathbf {T}}_{(\alpha )}^{\text {H}}}\mathbf {P}\mathbf {T}_{(\alpha )})+\hat{\mathbf {g}}^{\text {H}}_{m}\varvec{\Omega }=\text {Tr}({{\Theta }_{m}}{{\mathbf {G}^{\text {H}}_{(\alpha )}}}{\mathbf {G}}_{(\alpha )}) \quad m\in \mathcal {H}'\\&\mathbf {P}\succeq 0\\ \end{aligned} \right. \end{aligned} \end{aligned}$$
(C17)

where

$$\begin{aligned} \begin{aligned} \hat{\mathbf {g}}_m=\left\{ \begin{array}{ll} \bar{\mathbf {g}}_m,&{}\quad \vert m \vert \le 2M \\ \mathbf {0}_{N^2 \times 1},&{}\quad \text {Otherwise}\\ \end{array} \right. \end{aligned} \end{aligned}$$
(C18)

\({\mathbf {G}}_{(\alpha )}=[\mathbf {0}_{N \times (\alpha -1)M}\quad \mathbf {G}\quad \mathbf {0}_{N \times (\alpha -1)M}]\), and \(\mathbf {0}_{m \times n}\) is a \(m \times n\) matrix with zeros. Then the following SDP

$$\begin{aligned} \begin{aligned}&\underset{\mathbf {P},{\varvec{\Omega }}}{\mathop {\max }}\,{\text {Re}}\left\{ \text {Tr}\left[ {{\mathbf {r}}^{\text {H}}}{\varvec{\Omega }} \right] \right\} \\&\text {s.t.}\quad \text {Tr}({{\Theta }_{m}}{{\mathbf {T}}_{(\alpha )}^{\text {H}}}\mathbf {P}\mathbf {T}_{(\alpha )})+\hat{\mathbf {g}}^{\text {H}}_{m}\varvec{\Omega }=\text {Tr}({{\Theta }_{m}}{{\mathbf {G}^{\text {H}}_{(\alpha )}}}{\mathbf {G}}_{(\alpha )}) \quad m\in \mathcal {H}' \\&\quad \quad \mathbf {P} \succeq 0\\ \end{aligned} \end{aligned}$$
(C19)

yields the identical solution to (11).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, P. Manifold Separation-Based DOA Estimation for Nonlinear Arrays via Compressed Super-Resolution of Positive Sources. Circuits Syst Signal Process 41, 5653–5675 (2022). https://doi.org/10.1007/s00034-022-02044-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-022-02044-0

Keywords

Navigation