Skip to main content
Log in

Global Stabilization for a Class of Stochastic High-Order Feedforward Nonlinear Systems Via Homogeneous Domination Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

For a class of more general stochastic high-order feedforward nonlinear systems, this paper deals with the problem of state feedback stabilization. By introducing an appropriate coordinate transformation, the original system is transformed into an equivalent one with tunable gain. After that, by reasonably extending the homogeneous domination approach and skillfully choosing the low gain scale, a state feedback controller is explicitly constructed to render the closed-loop system globally asymptotically stable in probability. Two numerical examples are provided to demonstrate the effectiveness of the proposed design method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Arcak, A. Teel, P. Kokotovic, Robust nonlinear control of feedforward systems with unmodeled dynamics. Automatica 37(2), 265–272 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Arslan, T. Basar, Decentralized risk-sensitive controller design for strict-feedback systems. Syst. Control Lett. 50(5), 383–393 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Y. Chen, A.K. Xue, S.S. Zhou, R.Q. Lu, Delay-dependent robust control for uncertain stochastic time-delay systems. Circuits Syst. Signal Process. 27(4), 447–460 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. T.S. Chen, J. Huang, Global robust output regulation by state feedback for strict feedforward systems. IEEE Trans. Autom. Control 54(9), 2157–2163 (2009)

    Article  MathSciNet  Google Scholar 

  5. S.H. Ding, C.J. Qian, S.H. Li, Global stabilization of a class of feedforward systems with lower-order nonlinearities. IEEE Trans. Autom. Control 55(3), 691–696 (2010)

    Article  MathSciNet  Google Scholar 

  6. S.H. Ding, C.J. Qian, S.H. Li, Q. Li, Global stabilization of a class of upper-triangular systems with unbounded or uncontrollable linearizations. Int. J. Robust Nonlinear Control 21(3), 271–294 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. H.B. Du, C.J. Qian, S.H. Li, Global stabilization of a class of uncertain upper-triangular systems under sampled-data control. Int. J. Robust Nonlinear Control 23(6), 620–637 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. P. Florchinger, Lyapunov-like techniques for stochastic stability. SIAM J. Control Optim. 33(4), 1151–1169 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Grognard, R. Sepulchre, G. Bastin, Global stabilization of feedforward systems with exponentially unstable Jacobian linearization. Syst. Control Lett. 37(2), 107–115 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. R.Z. Has’minskii, Stochastic stability of differential equations (Kluwer Academic Publishers, Norwell, 1980)

    Book  Google Scholar 

  11. G. Kaliora, A. Astolfi, Nonlinear control of feedforward systems with bounded signals. IEEE Trans. Autom. Control 49(11), 1975–1990 (2004)

    Article  MathSciNet  Google Scholar 

  12. G. Kaliora, A. Astolfi, On the stabilization of feedforward systems with bounded control. Syst. Control Lett. 54(3), 263–270 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. H.K. Khalil, Nonlinear systems, 3rd edn. (Prentice-Hall, New Jersey, 2002)

    MATH  Google Scholar 

  14. M. Krstic, H. Deng, Stabilization of uncertain nonlinear systems (Springer, New York, 1998)

    MATH  Google Scholar 

  15. H.J. Kushner, Stochastic stability and control (Academic Press, New York, 1967)

    MATH  Google Scholar 

  16. W.Q. Li, Y.W. Jing, S.Y. Zhang, Output-feedback stabilization for stochastic nonlinear systems whose linearizations are not stabilizable. Automatica 46(4), 752–760 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. L. Liu, S. Yin, H.J. Gao, F. Alsaadi, T. Hayat, Adaptive partial-state feedback control for stochastic high-order nonlinear systems with stochastic input-to-state stable inverse dynamics. Automatica 51(1), 285–291 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. L. Liu, M. Gao, State feedback control for stochastic feedforward nonlinear systems. Math. Probl. Eng. 2013, 1–6 (2013)

    MathSciNet  MATH  Google Scholar 

  19. L. Liu, X.J. Xie, Output-feedback stabilization for stochastic high-order nonlinear systems with time-varying delay. Automatica 47(12), 2772–2779 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. L. Liu, X.J. Xie, State feedback stabilization for stochastic feedforward nonlinear systems with time-varying delay. Automatica 49(4), 936–942 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. L. Marconi, A. Isidori, Robust global stabilization of a class of uncertain feedforward nonlinear systems. Syst. Control Lett. 41(4), 281–290 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. G. Mavelli, P. Palumbo, The Carleman approximation approach to solve a stochastic nonlinear control problem. IEEE Trans. Autom. Control 55(4), 976–982 (2010)

    Article  MathSciNet  Google Scholar 

  23. F. Mazenc, S. Bowong, Tracking trajectories of the cart-pendulum system. Automatica 39(4), 677–684 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Mazenc, L. Praly, Adding integrations, saturated controls and stabilization for feedforward systems. IEEE Trans. Autom. Control 41(11), 1559–1578 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. C.J. Qian, J. Li, Global output feedback stabilization of upper-triangular nonlinear systems using a homogeneous domination approach. Int. J. Robust Nonlinear Control 16(9), 441–463 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. C.J. Qian, W. Lin, Homogeneity with incremental degrees and global stabilization of a class of high-order upper-triangular systems. Int. J. Control 85(12), 1851–1864 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Sepulchre, M. Jankovic, P.V. Kokotovic, Constructive nonlinear control (Springer-Verlag, New York, 1996)

    MATH  Google Scholar 

  28. A.R. Teel, A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans. Autom. Control 41(9), 1256–1270 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Tsinias, Stochastic input-to-state stability and applications to global feedback stabilization. Int. J. Control 71(5), 907–930 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Tsinias, M.P. Tzamtzi, An explicit formula of bounded feedback stabilizers for feedforward systems. Syst. Control Lett. 43(4), 247–261 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Z.J. Wu, M.Y. Cui, P. Shi, H.R. Karimi, Stability of stochastic nonlinear systems with state-dependent switching. IEEE Trans. Autom. Control 58(8), 1904–1918 (2013)

    Article  MathSciNet  Google Scholar 

  32. X.J. Xie, L. Liu, Further results on output feedback stabilization for stochastic high-order nonlinear systems with time-varying delay. Automatica 48(10), 2577–2586 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. X.J. Xie, L. Liu, A homogeneous domination approach to state feedback of stochastic high-order nonlinear systems with time-varying delay. IEEE Trans. Autom. Control 58(2), 494–499 (2013)

    Article  MathSciNet  Google Scholar 

  34. S.L. Xie, L.H. Xie, Decentralized stabilization of a class of interconnected stochastic nonlinear systems. IEEE Trans. Autom. Control 45(1), 132–137 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  35. S.Y. Xu, J. Lam, H.J. Gao, Y. Zou, Robust \(H_{\infty }\) filtering for uncertain discrete stochastic systems with time delays. Circuits Syst. Signal Process. 24(6), 753–770 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  36. X.D. Ye, Universal stabilization of feedforward nonlinear systems. Automatica 39(1), 141–147 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  37. X.D. Ye, Pseudo-decentralized adaptive stabilization of large-scale feedforward nonlinear systems. Automatica 45(5), 1232–1236 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. L.X. Zhang, E.K. Boukas, J. Lam, Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities. IEEE Trans. Autom. Control 53(10), 2458–2464 (2008)

    Article  MathSciNet  Google Scholar 

  39. X.F. Zhang, E.K. Boukas, Y.G. Liu, L. Baron, Asymptotic stabilization of high-order feedforward systems with delays in the input. Int. J. Robust Nonlinear Control 20(12), 1395–1406 (2010)

    MathSciNet  MATH  Google Scholar 

  40. X.F. Zhang, Q.R. Liu, L. Baron, E.K. Boukas, Feedback stabilization for high order feedforward nonlinear time-delay systems. Automatica 47(5), 962–967 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. G.D. Zhao, X.J. Xie, A homogeneous domination approach to state feedback of stochastic high-order feedforward nonlinear systems. Int. J. Control 86(5), 966–976 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. G.M. Zhuang, Y.L. Wei, Non-fragile \(H_{\infty }\) filter design for uncertain stochastic nonlinear time-delay Markovian jump systems. Circuits Syst. Signal Process. 33(11), 3389–3419 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express sincere gratitude to the editor and reviewers for their helpful suggestions in improving the quality of this paper. This work was partially supported by the National Natural Science Foundation of China under Grants 61403041 and 61503036, the Program for Liaoning Excellent Talents in University under Grant LJQ2015001 and the Program for Liaoning Innovative Research Team in University under Grant LT2013023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Liu.

Appendix

Appendix

Proof of Lemma 7

(i) We first prove \(r_{n}+\tau \ge \max _{1\le i\le n}\{2r_{i}\}\). By \(r_{1}=1, r_{i+1}=\frac{r_{i}+\tau }{p}\), one has

$$\begin{aligned} r_i=\frac{p^{i-1}-1}{p^i-p^{i-1}}\tau +\frac{1}{p^{i-1}},\quad i=2,\ldots ,n. \end{aligned}$$
(29)

when \(i=1\), choosing \(d_1=\frac{(2p^{n-1}-1)(p-1)}{p^n-1}\) and \(\tau \ge d_1\), with (29) and \(p\in R_\mathrm{odd}^{>2}\), one can obtain

$$\begin{aligned} r_n+\tau \ge \frac{p^n-1}{p^n-p^{n-1}}d_1+\frac{1}{p^{n-1}} =2r_1. \end{aligned}$$
(30)

For \(i=2,\ldots ,n\), choosing \(d_i=\frac{(\frac{2}{p^{i-1}}-\frac{1}{p^{n-1}})(p-1)}{p-2+\frac{2}{p^{i-1}}-\frac{1}{p^{n-1}}}\) and \(\tau \ge d_i\), by (29) and \(p\in R_\mathrm{odd}^{>2}\), one gets

$$\begin{aligned} r_n+\tau\ge & {} \frac{p-2+\frac{2}{p^{i-1}}-\frac{1}{p^{n-1}}}{p-1}d_i+\frac{1}{p^{n-1}}-\frac{2}{p^{i-1}}+\frac{2-\frac{2}{p^{i-1}}}{p-1}\tau +\frac{2}{p^{i-1}}\nonumber \\= & {} 2r_i. \end{aligned}$$
(31)

It is easy to conclude that \(d_1>1, 0<d_i<1, i=2,\ldots ,n\). By (30) and (31), \(r_{n}+\tau \ge \max _{1\le i\le n}\{2r_{i}\}\) holds for any \(p\in R_\mathrm{odd}^{>2}\) and \(\tau \in [d_1,+\infty )\).

(ii) For any \(p\in R_\mathrm{odd}^{>2}\) and \(\tau \in [d_1,+\infty )\), one can choose \(l_1\) to satisfy \(r_{n}+\tau \ge \max _{1\le i\le n}\{\frac{r_{i}+\tau }{l_1}\}\).

From (i) and (ii), it follows that \(r_{n}+\tau \ge \max _{1\le i\le n}\{2r_{i}, \frac{r_{i}+\tau }{l_1}\}\). According to the denseness of real number, there exists \(\mu \in R_\mathrm{odd}^{+}\) such that \(r_{n}+\tau \ge \mu \ge \max _{1\le i\le n}\{2r_{i}, \frac{r_{i}+\tau }{l_1}\}\) holds for any \(p\in R_\mathrm{odd}^{>2}\) and \(\tau \in [d_1,+\infty )\). \(\square \)

Proof of Lemma 8

We first prove that \(V_{i}(\eta _1,\ldots ,\eta _{i})\) is \({\mathcal {C}}^2\). By (10) and (12), it is easy to obtain

$$\begin{aligned}&\frac{\partial U_{i}}{\partial \eta _{i}}=\zeta _{i}^{\frac{q_{i}}{\mu }},\quad \frac{\partial ^2U_{i}}{\partial \eta _{i}^2}=\frac{q_{i}}{r_i}\eta _i^{\frac{\mu -r_i}{r_i}} \zeta _{i}^{\frac{q_{i}}{\mu }-1}, \quad \frac{\partial ^2U_{i}}{\partial \eta _{i}\partial \eta _{j}}=\frac{\partial ^2U_{i}}{\partial \eta _{j}\partial \eta _{i}}=-\frac{q_{i}}{\mu } \frac{\partial {\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}} \zeta _{i}^{\frac{q_{i}}{\mu }-1},\nonumber \\&\quad \frac{\partial U_{i}}{\partial \eta _{j}} =-\frac{q_{i}}{\mu }\frac{\partial {\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}}\int _{\eta _{i}^{*}}^{\eta _{i}}\left( s^{\frac{\mu }{r_{i}}}-{\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}\right) ^{\frac{q_{i}}{\mu }-1}\hbox {d}s, \quad \frac{\partial ^2 U_{i}}{\partial \eta _{j}^2}=-\frac{q_{i}}{\mu }\frac{\partial ^2{\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}^2}\cdot \nonumber \\&\quad \int _{\eta _{i}^{*}}^{\eta _{i}}\left( s^{\frac{\mu }{r_{i}}}-{\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}\right) ^{\frac{q_{i}}{\mu }-1}\hbox {d}s +\frac{q_{i}(q_{i}-\mu )}{\mu ^2}\left( \frac{\partial {\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}}\right) ^2\int _{\eta _{i}^{*}}^{\eta _{i}} \left( s^{\frac{\mu }{r_{i}}}-{\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}\right) ^{\frac{q_{i}}{\mu }-2}\hbox {d}s,\nonumber \\&\quad \frac{\partial ^2 U_{i}}{\partial \eta _{j}\partial \eta _{k}}= \frac{\partial ^2 U_{i}}{\partial \eta _{k}\partial \eta _{j}}= \frac{q_{i}(q_{i}-\mu )}{\mu ^2}\frac{\partial {\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}}\frac{\partial {\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{k}}\int _{\eta _{i}^{*}}^{\eta _{i}} \left( s^{\frac{\mu }{r_{i}}}-{\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}\right) ^{\frac{q_{i}}{\mu }-2}\hbox {d}s, \end{aligned}$$
(32)

where \(j,k=1,\ldots ,i-1\) and the last equality is obtained by using \(\frac{\partial ^2{\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}\partial \eta _{k}}=0, j\ne k\). By \(\mu \ge \max _{1\le i\le n}\{2r_{i}, \frac{r_{i}+\tau }{l_1}\}\), \(\frac{\partial {\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}}=-\beta _{i-1}\cdots \beta _j \frac{\mu }{r_j}\eta _j^{\frac{\mu -r_j}{r_j}}\) and \(\frac{\partial ^2{\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}^2}=-\beta _{i-1}\cdots \beta _j \frac{\mu (\mu -r_j)}{r_j^2}\eta _j^{\frac{\mu -2r_j}{r_j}}\), one has \(\frac{q_{i}}{\mu }-2\ge 0, \frac{\mu -r_j}{r_j}\ge 1\) and \(\frac{\mu -2r_j}{r_j}\ge 0\), from which and (32), we know that \(V_i\) is \({\mathcal {C}}^2\).

Next, we divide into two cases to prove that \(V_{i}(\eta _1,\ldots ,\eta _i)\) is positive definite and proper.

Case I When \(\eta _{i}^{*}\le \eta _{i}\), using Lemma 5, one leads to

$$\begin{aligned} U_i(\eta _1,\ldots ,\eta _i)\ge & {} \frac{2^{\frac{q_{i}}{\mu }}}{2^{\frac{q_{i}}{r_i}}} \int _{\eta _{i}^{*}}^{\eta _{i}}(s-\eta _{i}^{*})^{\frac{q_{i}}{r_i}}\hbox {d}s \ge \frac{2^{\frac{q_{i}}{\mu }}r_i}{2^{\frac{q_{i}}{r_i}}(4l_1\mu -\tau )} (\eta _{i}-\eta _{i}^{*})^{\frac{4l_1\mu -\tau }{r_{i}}}. \end{aligned}$$
(33)

Case II When \(\eta _{i}^{*}\ge \eta _{i}\), (33) can be proved similarly.

Therefore, \(V_i=V_{i-1}(\eta _1,\ldots ,\eta _{i-1})+U_{i}(\eta _1,\ldots ,\eta _{i})\ge V_{i-1}(\eta _1,\ldots ,\eta _{i-1})+m_{i}(\eta _{i}-\eta _{i}^{*})^{\frac{4l_1\mu -\tau }{r_{i}}}\), which implies that \(V_i(\bar{\eta }_i)\) is positive definite and proper, where \(m_{i}\) is a positive constant.

At last, we prove inequality (13). From (3), (10)–(12) and (32), it follows that

$$\begin{aligned} {\mathcal {L}}V_{i}\le & {} -\ell \sum _{j=1}^{i-1}c_{i-1,j}\zeta _j^{4l_1} +\ell \zeta _{i}^{\frac{q_{i}}{\mu }}\eta _{i+1}^{p} +\ell \zeta _{i-1}^{\frac{q_{i-1}}{\mu }}(\eta _{i}^{p}-\eta _{i}^{*p})\nonumber \\&-\frac{q_{i}}{\mu }\ell \sum _{j=1}^{i-1} \frac{\partial {\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}}\eta _{j+1}^{p} \int _{\eta _{i}^{*}}^{\eta _{i}}\left( s^{\frac{\mu }{r_{i}}}-{\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}\right) ^{\frac{q_{i}}{\mu }-1}\hbox {d}s. \end{aligned}$$
(34)

We concentrate on the last two terms on the right-hand side of (34).

When \(\frac{r_{i}p}{\mu }\le 1\), using (10) and Lemma 5, one obtains

$$\begin{aligned} |\eta _{i}^{p}-\eta _{i}^{*p}|= & {} \left| \left( \eta _{i}^{\frac{\mu }{r_{i}}}\right) ^{\frac{r_{i}p}{\mu }}-\left( {\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}\right) ^{\frac{r_{i}p}{\mu }}\right| \le 2^{1-\frac{r_{i}p}{\mu }}|\zeta _{i}|^{\frac{r_{i}p}{\mu }}. \end{aligned}$$
(35)

when \(\frac{r_{i}p}{\mu }\ge 1\), by (10) and Lemmas 46, there exist positive constants c, \(b_{i1}\) and \(\bar{b}_{i1}\) such that

$$\begin{aligned} |\eta _{i}^{p}-\eta _{i}^{*p}|\le & {} c|\zeta _{i}|\left| \zeta _{i}^{\frac{r_{i}p}{\mu }-1} +(\beta _{i-1}\zeta _{i-1})^{\frac{r_{i}p}{\mu }-1}\right| \nonumber \\\le & {} b_{i1}|\zeta _{i-1}|^{\frac{r_{i}p}{\mu }}+\bar{b}_{i1}|\zeta _{i}|^{\frac{r_{i}p}{\mu }}. \end{aligned}$$
(36)

Combining (35) and (36), by Lemma 4, one has

$$\begin{aligned} \left| \zeta _{i-1}^{\frac{q_{i-1}}{\mu }}(\eta _{i}^{p}-\eta _{i}^{*p})\right|\le & {} |\zeta _{i-1}|^{\frac{q_{i-1}}{\mu }} \left( b_{i1}|\zeta _{i-1}|^{\frac{r_{i}p}{\mu }} +\tilde{b}_{i1}|\zeta _{i}|^{\frac{r_{i}p}{\mu }}\right) \nonumber \\\le & {} l_{i,i-1,1}\zeta _{i-1}^{4l_1}+\rho _{i1}\zeta _{i}^{4l_1}, \end{aligned}$$
(37)

where \(\tilde{b}_{i1}=\max \{2^{1-\frac{r_{i}p}{\mu }},\bar{b}_{i1}\}\), \(l_{i,i-1,1}\) and \(\rho _{i1}\) are positive constants.

With the help of (10) and Lemmas 4 and 5, one obtains

$$\begin{aligned}&\left| -\frac{q_{i}}{\mu }\sum _{j=1}^{i-1} \frac{\partial {\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}}{\partial \eta _{j}}\eta _{j+1}^{p} \int _{\eta _{i}^{*}}^{\eta _{i}}\left( s^{\frac{\mu }{r_{i}}}-{\eta _{i}^{*}}^{\frac{\mu }{r_{i}}}\right) ^{\frac{q_{i}}{\mu }-1}\hbox {d}s\right| \nonumber \\&\quad \le \bar{d}\sum _{j=1}^{i-1}|\eta _j|^{\frac{\mu }{r_j}-1}|\eta _{j+1}|^{p} |\zeta _i|^{\frac{4l_1\mu -\tau }{\mu }-1}\nonumber \\&\quad \le \tilde{d}\sum _{j=1}^{i-1}\left( |\zeta _j|^{1-\frac{r_j}{\mu }}+ |\zeta _{j-1}|^{1-\frac{r_j}{\mu }}\right) |\zeta _i|^{\frac{4l_1\mu -\tau }{\mu }-1} \left( |\zeta _{j+1}|^{\frac{\tau +r_{j}}{\mu }} +|\zeta _{j}|^{\frac{\tau +r_{j}}{\mu }}\right) \nonumber \\&\quad \le \sum _{j=1}^{i-1}l_{ij2}\zeta _{j}^{4l_1}+\rho _{i2}\zeta _{i}^{4l_1}, \end{aligned}$$
(38)

where \(\bar{d}, \tilde{d}, l_{ij2} (j=1,\ldots ,i-1)\) and \(\rho _{i2}\) are positive constants.

Choosing

$$\begin{aligned} \eta _{i+1}^*= & {} -\beta _{i}^{\frac{r_{i+1}}{\mu }}\zeta _{i}^{\frac{r_{i+1}}{\mu }}, \quad \beta _i=(c_{ii}+\rho _{i1}+\rho _{i2})^{\frac{\mu }{r_{i+1}p}}, \quad \ c_{ii}>0, \nonumber \\ c_{ij}= & {} \bigg \{\begin{array}{ll}c_{i-1,j}-l_{ij2}>0,&{} \quad j=1,\ldots ,i-2,\\ c_{i-1,i-1}-l_{i,i-1,1}-l_{i,i-1,2}>0,&{} \quad j=i-1, \end{array} \end{aligned}$$
(39)

and substituting (37)–(39) into (34), the inequality (13) holds. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Xing, X. & Gao, M. Global Stabilization for a Class of Stochastic High-Order Feedforward Nonlinear Systems Via Homogeneous Domination Approach. Circuits Syst Signal Process 35, 2723–2740 (2016). https://doi.org/10.1007/s00034-015-0170-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0170-x

Keywords

Navigation