Skip to main content
Log in

Design and Implementation of Computationally Efficient Image Compressor for Wireless Capsule Endoscopy

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

An image compressor inside wireless capsule endoscope should have low power consumption, small silicon area, high compression rate and high reconstructed image quality. Simple and efficient image compression scheme, consisting of reversible color space transformation, quantization, subsampling, differential pulse code modulation (DPCM) and Golomb–Rice encoding, is presented in this paper. To optimize these methods and combine them optimally, the unique properties of human gastrointestinal tract image are exploited. Computationally simple and suitable color spaces for efficient compression of gastrointestinal tract images are proposed. Quantization and subsampling methods are optimally combined. A hardware-efficient, locally adaptive, Golomb–Rice entropy encoder is employed. The proposed image compression scheme gives an average compression rate of 90.35 % and peak signal-to-noise ratio of 40.66 dB. ASIC has been fabricated on UMC130nm CMOS process using Faraday high-speed standard cell library. The core of the chip occupies 0.018 mm\(^2\) and consumes 35 \(\upmu {\text {W}}\) power. The experiment was performed at 2 frames per second on a \(256\times 256\) color image. The power consumption is further reduced from 35 to 9.66 \(\upmu \)W by implementing the proposed image compression scheme using Faraday low-leakage standard cell library on UMC130nm process. As compared to the existing DPCM-based implementations, our realization achieves a significantly higher compression rate for similar area and power consumption. We achieve almost as high compression rate as can be achieved with existing DCT-based image compression methods, but with an order of reduced area and power consumption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T. Acharya, A.K. Ray, Image Processing: Principles and Applications (Wiley, New Jersey, 2005)

    Book  Google Scholar 

  2. O. Alonso, L. Freixas, A. Dieguez, Advancing towards smart endoscopy with specific electronics to enable locomotion and focusing capabilities in a wireless endoscopic capsule robot, in IEEE Biomedical Circuits and Systems Conference (BioCAS, 2009). (Beijing. China, 2009), p. 213–216. doi:10.1109/BIOCAS.2009.5372047

  3. Aptina, MT9V011 Image Sensor. http://www.aptina.com. Accessed May 2014

  4. N. Bourbakis, G. Giakos, A. Karargyris, Design of new-generation robotic capsules for therapeutic and diagnostic endoscopy, in 2010 IEEE International Conference on Imaging Systems and Techniques (IST), Thessaloniki, Greece (2010), pp. 1–6. doi:10.1109/IST.2010.5548467

  5. C. Chang, L. Zhiyong, H.Chao, M.Q.-H.Meng, A novel wireless capsule endoscope with JPEG compression engine, in IEEE International Conference on Automation and Logistics (ICAL), Hong Kong and Macau, China (2010), pp. 553–558. doi:10.1109/ICAL.2010.5585345

  6. X. Chen, X. Zhang, L. Zhang, X. Li, N. Qi, H. Jiang, Z. Wang, A wireless capsule endoscope system with low-power controlling and processing ASIC. IEEE Trans. Biomed. Circuits Syst. 3(1), 11–22 (2009). doi:10.1109/TBCAS.2008.2006493

    Article  Google Scholar 

  7. H. Chao, M.Q.-H. Meng, L. Li, P. Yinzi, L. Zhiyong, Image representation and compression for capsule endoscope robot, in Proceedings of International Conference on Information and Automation (ICIA’09), Zhuhai, Macau, China (2009), pp. 506–511. doi:10.1109/ICINFA.2009.5204976

  8. P.C. Cosman, R.M. Gray, R.A. Olshen, Evaluating quality of compressed medical images: SNR, subjective rating, and diagnostic accuracy. Proc. IEEE. 82(6), 919–932 (1994). doi:10.1109/5.286196

    Article  Google Scholar 

  9. T.M. Deserno, Biomedical Image Processing (Springer, Heidelberg, 2011)

    Book  MATH  Google Scholar 

  10. L. Dung, Y. Wu, H. Lai, P. Weng, A modified H.264 intra-frame video encoder for capsule endoscope, in Biomedical Circuits and Systems Conference (BioCAS), Baltimore, MD, USA (2008), pp. 61–64. doi:10.1109/BIOCAS.2008.4696874

  11. Gatrolab. http://gastrolab.net/. Accessed May 2014

  12. S. Hosseini, M.B. Khamesee, Design and control of a magnetically driven capsule-robot for endoscopy and drug delivery, in 2009 IEEE Toronto International Conference on Science and Technology for Humanity (TIC-STH), Toronto, Canada (2009), pp. 697–702. doi:10.1109/TIC-STH.2009.5444409

  13. G. Iddan, G. Meron, A. Glukhovsky, P. Swain, Wireless capsule endoscopy. Nature 405(6785), 415–417 (2000). doi:10.1038/35013140

    Article  Google Scholar 

  14. R. Istepanian, N. Philip, M.G. Martini, N. Amso, P. Shorvon, Subjective and objective quality assessment in wireless teleultrasonography imaging, in 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS), Vancouver, Canada (2008), pp. 5346–5349. doi:10.1109/IEMBS.2008.4650422

  15. W. Jing, L. Ye, Low-complexity video compression for capsule endoscope based on compressed sensing theory, in Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Minneapolis, MN, USA (2009), pp. 3727–3730. doi:10.1109/IEMBS.2009.5334819

  16. JPEG, Lossless and near-lossless compression of continuous-tone still images-baseline (JPEG-LS), T.87 (1998)

  17. T.H. Khan, K. Wahid, Lossless and low-power image compressor for wireless capsule endoscopy. VLSI Design. 2011, art. ID 343787, (2011). doi:10.1155/2011/343787

  18. T.H. Khan, K. Wahid, Low-power and low complexity compressor for video capsule endoscopy. IEEE Trans. Circuits Syst. Video Technol. 21(10), 1534–1546 (2011). doi:10.1109/TCSVT.2011.2163985

    Article  Google Scholar 

  19. T.H. Khan, K. Wahid, Subsample-based image compression for capsule endoscopy. J. Real-Time Image Proc. 8(1), 5–19 (2011). doi:10.1007/s11554-011-0208-7

    Article  Google Scholar 

  20. T.H. Khan, K. Wahid, Implantable narrow band image compressor for capsule endoscopy, in IEEE International Symposium on Circuits and Systems (ISCAS), Seoul, South Korea (2012), pp. 2203–2206. doi:10.1109/ISCAS.2012.6271727

  21. T.H. Khan, K. Wahid, Low-complexity colour-space for capsule endoscopy image compression. Electron. Lett. 47(22), 1217–1218 (2011). doi:10.1049/el.2011.2211

    Article  Google Scholar 

  22. J. Korhonen, Y. Junyong, Peak signal-to-noise ratio revisited: Is simple beautiful?, in Fourth International Workshop on Quality of Multimedia Experience (QoMEX), Yarra Valley, VIC, Australia (2012), pp. 37–38. doi:10.1109/QoMEX.2012.6263880

  23. M. Lin, L. Dung, A subsample-based low-power image compressor for capsule gastrointestinal endoscopy. EURASIP J. Adv. Signal Process. 2011, 415–417 (2011). doi:10.1155/2011/257095

    Article  Google Scholar 

  24. M. Lin, L. Dung, P. Weng, An ultra-low-power image compressor for capsule endoscope. BioMed Eng. 5(14), 415–417 (2000). doi:10.1186/1475-925X-5-14

  25. J.W. Marks, Wireless capsule endoscopy [Online]. http://www.medicinenet.com/capsule_endoscopy/article.htm. Accessed 12 April 2014

  26. C. McCaffrey, O. Chevalerias, C. O’Mathuna, K. Twomey, Swallowable-capsule technology. Pervasive Comput 7(1), 23–29 (2008). doi:10.1109/MPRV.2008.17

    Article  Google Scholar 

  27. Microsemi, ZL70102 Wireless for Implantable Medical Devices. http://www.microsemi.com/. Accessed May 2014

  28. A. Moglia, A. Menciassi, P. Dario, Recent patents on wireless capsule endoscopy. Recent Patents Biomed. Eng. 7(1), 24–33 (2008). doi:10.2174/1874764710801010024

    Article  Google Scholar 

  29. A. Mostafa, K. Wahid, S. Ko, An efficient YUV-based image compression algorithm for wireless capsule endoscopy, in Proceedings of 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, ON, Canada (2011), pp. 943–946. doi:10.1109/CCECE.2011.6030598

  30. OmniVisoin, OVM7690 CameraCube.http://www.ovt.com. Accessed May 2014

  31. S.K. Pattanaik, K.K. Mahapatra, G. Panda, A novel lossless image compression algorithm using arithmetic modulo operation, in IEEE Conference on Cybernetics and Intelligent Systems, Bangkok, Thailand, (2006), pp. 1–5. doi:10.1109/ICCIS.2006.252303

  32. M. Quirini, A. Menciassi, C. Stefanini, S. Gorini, G. Pernorio, P. Dario, Development of a legged capsule for the gastrointestinal tract: an experimental set-up, in 2005 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shatin, China (2005), pp. 161–167. doi:10.1109/ROBIO.2005.246256

  33. K. Takizawa, K. Hamaguchi, Low-complexity video encoding method for wireless image transmission in capsule endoscope, in Proceedings of 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Buenos Aires, Argentina (2010), pp. 3479–3482. doi:10.1109/IEMBS.2010.5627839

  34. M. Tkalcic, J.F. Tasic, Colour spaces: perceptual, historical and applicational background, in EUROCON 2003. Computer as a Tool. The IEEE Region 8, (2003), pp. 304–308 (2003). doi:10.1109/EURCON.2003.1248032

  35. TCM8230MD Image Sensor. http://www.sparkfun.com. Accessed May 2014

  36. D. Travis, Effective Color Displays: Theory and Practice (Academic Press, London, 1991)

    Google Scholar 

  37. P. Turcza, M. Duplaga, Low-power image compression for wireless capsule endoscopy, in IEEE International Workshop on Imaging Systems and Techniques (IST’07), Krakow, Poland (2007), pp. 1–4. doi:10.1109/IST.2007.379586

  38. P. Turcza, M. Duplaga, Low power FPGA-based image processing core for wireless capsule endoscopy. Sens. Actuators A Phys. 172(2), 552–560 (2011). doi:10.1016/j.sna.2011.09.026

    Article  Google Scholar 

  39. P. Turcza, M. Duplaga, Hardware-efficient low-power image processing system for wireless capsule endoscopy. IEEE J. Biomed Health Inform. 17(6), 1046–1056 (2013). doi:10.1109/JBHI.2013.2266101

    Article  Google Scholar 

  40. D.P. Varodayan, Adaptive Distributed Source Coding, Ph.D. thesis. Stanford University, USA 2010

  41. K. Wahid, S. Ko, D.Teng, Efficient hardware implementation of an image compressor for wireless capsule endoscopy applications, in IEEE International Joint Conference on Neural Networks (IJCNN), Hong Kong, China (2008), pp. 2761–2765. doi:10.1109/IJCNN.2008.4634186

  42. Z. Wang, A.C. Bovik, E.P. Simoncelli, Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Process. Mag. 26(1), 98–117 (2009). doi:10.1109/MSP.2008.930649

    Article  Google Scholar 

  43. Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). doi:10.1109/TIP.2003.819861

    Article  Google Scholar 

  44. A.Y. Wang, C.G. Sodini, On the energy efficiency of wireless transceivers, in Proceedings of 2006 IEEE International Conference on Communications (ICC’06), Istanbul, Greece (2006), pp. 3783–3788. doi:10.1109/ICC.2006.255661

  45. M.J. Weinberger, G. Seroussi, G. Sapiro, LOCO-I: a low complexity, context-based, lossless image compression algorithm, in Proceedings of Data Compression Conference (DCC’96), Snowbird, UT, USA (1996), pp. 140–149. doi:10.1109/DCC.1996.488319

  46. X. Xie, G. Li, X. Chen, X. Li, Z. Wang, A low-power digital ic design inside the wireless endoscopic capsule. IEEE J. Solid-State Circuits 41(11), 2390–2400 (2006). doi:10.1109/JSSC.2006.882884

    Article  Google Scholar 

  47. L. Zhang, L. Zhang, X. Mou, D. Zhang, FSIM: a feature similarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). doi:10.1109/TIP.2011.2109730

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ravi Informatics for soldering the packaged IC on PCB. The authors also would like to thank Texas Instruments Pvt Ltd for providing SN74AVC8T245, a voltage level shifter IC which we have used to interface our chip with a logic analyzer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinde A. Fante.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fante, K.A., Bhaumik, B. & Chatterjee, S. Design and Implementation of Computationally Efficient Image Compressor for Wireless Capsule Endoscopy. Circuits Syst Signal Process 35, 1677–1703 (2016). https://doi.org/10.1007/s00034-015-0136-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0136-z

Keywords

Navigation