Skip to main content
Log in

Analog Emulator of Genuinely Floating Memcapacitor with Piecewise-Linear Constitutive Relation

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a method for emulating floating memcapacitors with piecewise-linear constitutive relations between time-domain integrals of voltage and charge. The emulation is based on multiple-state floating capacitor, implemented via the switched-capacitor technique. The states of internal switches are derived from the memcapacitor memory, which stores the history of the terminal voltage. The procedure is demonstrated on a two-state memcapacitor. Computer simulations are compared with measurements on the manufactured specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. AD8421. 3 nV/sqrt Hz, Low Power Instrumentation Amplifier. Analog Devices, Data Sheet, Rev. 0 (2012)

  2. S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. Regul. Pap. 60(11), 3008–3021 (2013)

  3. S. Benderli, T.A. Wey, On SPICE macromodeling of TiO2 memristors. Electron. Lett. 45(7), 377–379 (2009)

    Article  Google Scholar 

  4. D. Biolek, Z. Biolek, Fourth fundamental circuit element: SPICE modeling and simulation, in Memristors and Memristive Systems, ed. by R. Tetzlaff (Springer, New York, 2014), pp. 105–162

    Chapter  Google Scholar 

  5. Z. Biolek, D. Biolek, V. Biolková, Spice model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)

    Google Scholar 

  6. D. Biolek, Z. Biolek, V. Biolkova, PSPICE modeling of meminductor. Analog Integr. Circuits Signal Process. 66(1), 129–137 (2011)

    Article  Google Scholar 

  7. D. Biolek, Z. Biolek, V. Biolkova, SPICE modelling of memcapacitor. Electron. Lett. 46(7), 520–522 (2010)

    Article  Google Scholar 

  8. D. Biolek, Z. Biolek, V. Biolkova, Behavioral modeling of memcapacitor. Radioengineering 20(1), 228–233 (2011)

    Google Scholar 

  9. D. Biolek, M. Di Ventra, Y.V. Pershin, Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering 22(4), 945–968 (2013)

    Google Scholar 

  10. D. Biolek et al., Mutators for transforming nonlinear resistor into memristor, in 20th European Conference on Circuit Theory and Design (ECCTD) (Linkoping, Sweden, 2011), pp. 488–491

  11. D. Biolek, Memristor emulators, in Memristive Networks, ed. by A. Adamatzky (Springer, New York, 2014), pp. 487–504

    Chapter  Google Scholar 

  12. D. Biolek, V. Biolková, Mutator for transforming memristor into memcapacitor. Electron. Lett. 46(21), 1428–1429 (2010)

    Article  Google Scholar 

  13. D. Biolek, V. Biolkova, Z. Kolka, Mutators simulating memcapacitors and meminductors, in Proceedings of the 11th Biennial IEEE Asia Pacific Conference on Circuits and Systems (APCCAS 2010) (Kuala Lumpur, Malaysia, 2010), pp. 800–803

  14. D. Biolek, V. Biolková, Z. Kolka, Low-voltage-low-power current conveyor for battery supplied memristor emulator, in Proceedings of the 5th International Conference on Circuits, Systems and Signals (CSS’11) (Corfu, Greece, 2011), pp. 171–175

  15. D. Biolek, Z. Biolek, V. Biolková, Pinched hysteretic loops of ideal memristors, memcapacitors and meminductors must be “self-crossing”. Electron. Lett. 47(25), 1385–1387 (2011)

    Article  Google Scholar 

  16. Z. Biolek, D. Biolek, V. Biolková, Computation of the area of memristor pinched hysteresis loop. IEEE Trans. Circuits Syst. Express Briefs 59(9), 1549–7747 (2012)

    Google Scholar 

  17. V. Biolková, D. Biolek, Z. Kolka, Software implementation of higher-order elements, in Proceedings of 16th WSEAS International Conference on Circuits and Systems (Kos, Greece, 2012), pp. 66–71

  18. V. Biolková, D. Biolek, Z. Kolka, Unified approach to synthesis of mutators employing operational transimpedance amplifiers for memristor emulation, in Proceedings of the 11th International Conference on Instrumentation, Measurement, Circuits and Systems (IMCAS’12) (Rovaniemi, Finland, 2012), pp. 110–115

  19. L.O. Chua, Nonlinear circuit foundations for nanodevices, part I: the four-element torus. Proc. IEEE 91(11), 1830–1859 (2003)

    Article  Google Scholar 

  20. L.O. Chua, Memristor—the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  21. L.O. Chua, Invited Talk on Memristor and Memristive Systems Symposium (UC Berkeley, Berkeley, CA, 2008)

  22. F. Corinto, A. Ascoli, A boundary condition-based approach to the modeling of memristor nano-structures. IEEE Trans. Circuits Syst. Regul. Pap. 59(11), 2713–2726 (2012)

    Article  MathSciNet  Google Scholar 

  23. M. Di Ventra, Y.V. Pershin, L.O. Chua, Circuit elements with memory: memristors, memcapacitors, and meminductors. Proc. IEEE 97(10), 1717–1724 (2009)

    Article  Google Scholar 

  24. Y. Dong-Sheng, L. Yan, H.H.C. Iu, H. Yi-Hua, Mutator for transferring a memristor emulator into meminductive and memcapacitive circuits. Chin. Phys. B 23(7), 070702-1-11 (2014)

    Google Scholar 

  25. K. Eshraghian, O. Kavehei, K.R. Cho, J.M. Chappell, A. Iqbal, S.F. Al-Sarawi, D. Abbot, Memristive device fundamentals and modeling: applications to circuits and systems simulation. Proc. IEEE 100(6), 1991–2007 (2012)

    Article  Google Scholar 

  26. J. Flak, J.K. Poikonen, Solid-state memcapacitors and their applications. in Memristive Networks (Springer book, New York, 2014), pp. 585–601

  27. M.E. Fouda, A.G. Radwan, Charge controlled memristor-less memcapacitor emulator. Electron. Lett. 48(23), 1454–1455 (2012)

    Article  Google Scholar 

  28. P. He, L. Wang, S. Duan, The charging and discharging characteristics of memcapacitor storage with applications, in Proceedings of the 10th World Congress of Intelligent Control and Automation (Beijing, China, 2012), pp. 5139–5143

  29. G.K. Kachmar, J.H. Pierluissi, B. D-Rouhani, J.M. García, Modeling the response of a memcapacitor for impulse, step, ramp, and sinusoidal inputs. Int. J. Eng. Res. Technol. 3(8), 225–232 (2014)

    Google Scholar 

  30. H. Kim et al., Memristor emulator for memristor circuit applications. IEEE Trans. Circuits Syst. Regul. Pap. 59(10), 2422–2431 (2012)

    Article  Google Scholar 

  31. Z. Kolka, D. Biolek, V. Biolková, Hybrid modeling and emulation of mem-systems. Int. J. Numer. Model. Electron. Netw. Devices Fields 25(3), 216–225 (2012)

    Article  Google Scholar 

  32. R. Kozma, R.E. Pino, G.E. Pazienza (eds.), Advances in Neuromorphic Memristor Science and Applications (Springer, New York, 2012)

    Google Scholar 

  33. S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, TEAM: ThrEshold adaptive memristor model. IEEE Trans. Circuits Syst. Regul. Pap. 60(1), 211–221 (2012)

    Article  MathSciNet  Google Scholar 

  34. C. Li, C. Li, T. Huang, H. Wang, Synaptic memcapacitor bridge synapses. Neurocomputing 122, 370–374 (2013)

    Article  Google Scholar 

  35. J. Martinez, M. Di Ventra, Y. V. Pershin, Solid-state memcapacitor. arXiv:0912.4921v2 [cond-mat.mes-hall] 31 Dec (2009)

  36. Memelements. List of references. http://memlinks.eu

  37. B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifurc Chaos 20(5), 1335–1350 (2010)

    Article  MATH  Google Scholar 

  38. Y.V. Pershin, M. Di Ventra, Memristive circuits simulate memcapacitors and meminductors. Electron. Lett. 46(7), 517–518 (2010)

    Article  Google Scholar 

  39. Y.V. Pershin, M. Di Ventra, Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 47(4), 243–244 (2011)

    Article  Google Scholar 

  40. Y.V. Pershin, M. Di Ventra, Practical approach to programmable analog circuits with memristors. IEEE Trans. Circ. Syst. I 57(8), 1857–1864 (2010)

    Article  Google Scholar 

  41. T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with non-linear dopant kinetics. IEEE Trans. Electron Devices 58(99), 1–7 (2011)

    Google Scholar 

  42. PSpice A/D Reference Guide. Product Version 16.5. Cadence Design Systems Inc, June 2011

  43. Rák, G. Cserey, Macromodeling of the memristor in SPICE. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)

    Article  Google Scholar 

  44. M.P. Sah, R.K. Budhathoki, C. Yang, H. Kim, Mutator-based meminductor emulator for circuit applications. Circuits Syst. Signal Process. 33, 2363–2383 (2014)

    Article  Google Scholar 

  45. M.P. Sah, C. Yang, R.K. Budhathoki, H. Kim, H.J. Yoo, Implementation of a memcapacitor emulator with off-the-shelf devices. Elektronika ir Elektrotechnika 19(8), 54–58 (2013)

    Article  Google Scholar 

  46. S. Shin, K. Kim, S.M. Kang, Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)

    Article  Google Scholar 

  47. J. Valsa, D. Biolek, Z. Biolek, An analogue model of the memristor. Int. J. Numer. Model. Electron. Netw. Devices Fields 24(4), 400–408 (2011)

    Article  MATH  Google Scholar 

  48. X.Y. Wang et al., Implementation of an analogue model of a memristor based on a light-dependent resistor. Chin. Phys. B 21(10), 108501-1-8 (2012)

    Google Scholar 

  49. X.Y. Wang et al., Design of a memcapacitor emulator based on a memristor. Phys. Lett. A 376, 394–399 (2012)

    Article  MATH  Google Scholar 

  50. D.S. Yu, H. Chen, H.H.C. Iu, Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans. Circuits Syst. II 60(6), 207–211 (2013)

    Article  Google Scholar 

  51. D. Yu, Y. Liang, H.H.C. Iu, L.O. Chua, A universal mutator for transformations among memristor, memcapacitor, and meminductor. IEEE Trans. Circuit Syst. Express. Briefs 61(10), 758–762 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Czech Science Foundation under Grant 14-19865S, by the Project for the development of K217 Department, UD Brno, and by the internal grant of the Czech Technical University in Prague No. SGS13/206/OHK3/3T/13, Czech Republic.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dalibor Biolek.

Appendix

Appendix

figure a
figure b
figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biolek, D., Biolková, V., Kolka, Z. et al. Analog Emulator of Genuinely Floating Memcapacitor with Piecewise-Linear Constitutive Relation. Circuits Syst Signal Process 35, 43–62 (2016). https://doi.org/10.1007/s00034-015-0067-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0067-8

Keywords

Navigation