Skip to main content
Log in

Delay-Dependent Stability for Discrete 2D Switched Systems with State Delays in the Roesser Model

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper is concerned with the problem of delay-dependent stability analysis for a class of two-dimensional (2D) discrete switched systems described by the Roesser model with state delays. First, the concept of average dwell time is extended to 2D switched systems with state delays. Then, based on the average dwell time approach, a delay-dependent sufficient condition for the exponential stability of the addressed systems is derived. All the results are formulated in terms of linear matrix inequalities (LMIs), which can be solved efficiently. A numerical example is given to illustrate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Anderson, P. Agathoklis, E.I. Jury, M. Mansour, Stability and the matrix Lyapunov equation for discrete 2-dimensional systems. IEEE Trans. Circuits Syst. 33(3), 261–267 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Benzaouia, A. Hmamed, F. Tadeo, Stability conditions for discrete 2D switching systems, based on a multiple Lyapunov function, in European Control Conference, Budapest, Hungary, August (2009), pp. 23–26

    Google Scholar 

  3. A. Benzaouia, A. Hmamed, F. Tadeo, A.E. Hajjaji, Stabilisation of discrete 2D time switching systems by state feedback control. Int. J. Syst. Sci. 42(3), 479–487 (2011)

    Article  MATH  Google Scholar 

  4. S.P. Boyd, L.E. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994)

    Book  MATH  Google Scholar 

  5. M.S. Branicky, Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Trans. Autom. Control 43(4), 186–200 (1998)

    Article  MathSciNet  Google Scholar 

  6. S.F. Chen, Stability analysis for 2-D systems with interval time-varying delays and saturation nonlinearities. IEEE Trans. Signal Process. 90(7), 2265–2275 (2010)

    Article  MATH  Google Scholar 

  7. S.F. Chen, Delay-dependent stability for 2D systems with time-varying delay subject to state saturation in the Roesser model. Appl. Math. Comput. 216(9), 2613–2622 (2012)

    Article  Google Scholar 

  8. C. Du, L. Xie, Control and Filtering of Two-Dimensional Systems (Springer, Berlin, 2002)

    MATH  Google Scholar 

  9. Z.Y. Feng, L. Xu, M. Wu, Y. He, Delay-dependent robust stability and stabilisation of uncertain two-dimensional discrete systems with time-varying delays. IET Control Theory Appl. 4(10), 1959–1971 (2010)

    Article  MathSciNet  Google Scholar 

  10. E. Fornasini, G. Marchesini, Stability analysis of 2-D systems. IEEE Trans. Circuits Syst. CAS-27(10), 1210–1217 (1980)

    Article  MathSciNet  Google Scholar 

  11. Y. He, M. Wu, G.P. Liu, J.H. She, Output feedback stabilization for a discrete-time system with a time-varying delay. IEEE Trans. Autom. Control 53(10), 2372–2377 (2008)

    Article  MathSciNet  Google Scholar 

  12. J.P. Hespanha, A.S. Morse, Stability of switched systems with average dwell time, in Proceedings of the 38th IEEE Conference on Decision and Control (1999), pp. 2655–2660

    Google Scholar 

  13. K. Hu, J. Yuan, Improved robust H filtering for uncertain discrete-time switched systems. IET Control Theory Appl. 3(3), 315–324 (2009)

    Article  MathSciNet  Google Scholar 

  14. T. Kaczorek, Two-Dimensional Linear Systems (Springer, Berlin, 1985)

    MATH  Google Scholar 

  15. Q.K. Li, J. Zhao, G.M. Dimirovski, Tracking control for switched time-varying delays systems with stabilizable and unstabilizable subsystems. Nonlinear Anal. Hybrid Syst. 3(2), 133–142 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. X. Li, H. Gao, A new model transformation of discrete-time systems with time-varying delay and its application to stability analysis. IEEE Trans. Autom. Control 56(9), 2172–2178 (2011)

    Article  Google Scholar 

  17. X. Li, H. Gao, X. Yu, A unified approach to the stability of generalized static neural networks with linear fractional uncertainties and delays. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 41(5), 1275–1286 (2011)

    Article  MathSciNet  Google Scholar 

  18. W.S. Lu, Two-Dimensional Digital Filters (Marcel Dekker, New York, 1992)

    MATH  Google Scholar 

  19. W.S. Lu, E. Lee, Stability analysis for two-dimensional systems via a Lyapunov approach. IEEE Trans. Circuits Syst. 32(1), 61–68 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. W. Paszke, J. Lam, K. Galkowski, S. Xu, A. Kummert, Delay-dependent stability condition for uncertain linear 2-D state-delayed systems, in Proc. 45th IEEE Conf. on Decision and Control, San Diego, CA, USA, December (2006), pp. 2783–2788

    Chapter  Google Scholar 

  21. W. Paszke, J. Lam, K. Galkowski, S. Xu, Z. Lin, Robust stability and stabilisation of 2D discrete state-delayed systems. Syst. Control Lett. 51(3/4), 277–291 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. D. Peng, X. Guan, H filtering of 2-D discrete state-delayed systems. Multidimens. Syst. Signal Process. 20(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Qiu, Y. Xia, H. Yang, J. Zhang, Robust stabilisation for a class of discrete-time systems with time-varying delays via delta operators. IET Control Theory Appl. 2(1), 87–93 (2008)

    Article  MathSciNet  Google Scholar 

  24. F.O. Souza, R.M. Palhares, New delay-interval stability condition. Int. J. Syst. Sci. (2012). doi:10.1080/00207721.2012.720297

    Google Scholar 

  25. X.M. Sun, J. Zhao, D.J. Hill, Stability and L 2-gain analysis for switched delay systems: a delay-dependent method. Automatica 42(10), 1769–1774 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Y.G. Sun, L. Wang, G. Xie, Delay-dependent robust stability and stabilization for discrete-time switched systems with mode-dependent time-varying delays. Appl. Math. Comput. 180(2), 428–435 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Y.G. Sun, L. Wang, G. Xie, Delay-dependent robust stability and H control for uncertain discrete-time switched systems with mode-dependent time delays. Appl. Math. Comput. 187(2), 1228–1237 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Wang, J. Zhao, Guaranteed cost control for a class of uncertain switched delay systems: an average dwell-time method. Cybern. Syst. 38(1), 105–122 (2007)

    Article  MATH  Google Scholar 

  29. Y.J. Wang, Z.X. Yao, Z.Q. Zuo, H.M. Zhao, Delay-dependent robust H control for a class of switched systems with time delay, in IEEE International Symposium on Intelligent Control (2008), pp. 882–887

    Google Scholar 

  30. Z. Xiang, S. Huang, Stability analysis and stabilization of discrete-time 2D switched systems. Circuits Syst. Signal Process. 32(1), 401–414 (2013)

    Article  MathSciNet  Google Scholar 

  31. G. Xie, L. Wang, Stabilization of switched linear systems with time-delay in detection of switching signal. J. Math. Anal. Appl. 305(6), 277–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. H. Xu, S. Xu, J. Lam, Positive real control for 2-D discrete delayed systems via output feedback controllers. J. Comput. Appl. Math. 216(1), 87–97 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Xu, Y. Zou, J.W. Lu, S. Xu, Robust H control for a class of uncertain nonlinear two-dimensional systems with state delays. J. Franklin Inst. 342(7), 877–891 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. J.M. Xu, L. Yu, H control of 2-D discrete state delay systems. Int. J. Control. Autom. Syst. 4(4), 516–523 (2006)

    MathSciNet  Google Scholar 

  35. J.M. Xu, L. Yu, Delay-dependent H control for 2-D discrete state delay systems in the second FM model. Multidimens. Syst. Signal Process. 20(4), 333–349 (2009)

    Article  MathSciNet  Google Scholar 

  36. S. Ye, W. Wang, Stability analysis and stabilisation for a class of 2-D nonlinear discrete systems. Int. J. Syst. Sci. 42(5), 839–851 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Ye, W. Wang, Y. Zou, J. Yao, Delay-dependent stability analysis for two-dimensional discrete systems with shift delays by the general models, in Proceedings of 10th International Conf. Control, Automation, Robotics and Vision (2008), pp. 973–978

    Google Scholar 

  38. H.B. Zeng, Y. He, M. Wu, C.F. Zhang, Complete delay-decomposing approach to asymptotic stability for neural networks with time-varying delays. IEEE Trans. Neural Netw. 22(5), 806–812 (2011)

    Article  Google Scholar 

  39. G. Zhai, B. Hu, K. Yasuda, A.N. Michel, Stability analysis of switched systems with stable and unstable subsystems: an average dwell time approach, in Proceedings of the American Control Conference, (2000), pp. 200–204

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 61273120.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengrong Xiang.

Appendix: The proof of Theorem 1

Appendix: The proof of Theorem 1

Proof

Without loss of generality, we assume that the kth subsystem is active. We consider the following Lyapunov–Krasovskii functional candidate for the kth subsystem:

$$ V_{k} \bigl( x ( i,j ) \bigr) = V_{k}^{h} \bigl( x^{h} ( i,j ) \bigr) + V_{k}^{v} \bigl( x^{v} ( i,j ) \bigr), $$
(14)

where

$$V_{k}^{h} \bigl( x^{h} ( i,j ) \bigr) = \sum _{g = 1}^{5} V_{gk}^{h} \bigl( x^{h} ( i,j ) \bigr),\qquad V_{k}^{v} \bigl( x^{v} ( i,j ) \bigr) = \sum_{g = 1}^{5} V_{gk}^{v} \bigl( x^{v} ( i,j ) \bigr), $$
$$V_{1k}^{h} \bigl( x^{h} ( i,j ) \bigr) = x^{h} ( i,j )^{T}P_{h}^{k}x^{h} ( i,j ),$$
$$V_{2k}^{h} \bigl( x^{h} ( i,j ) \bigr) = \sum_{r = i - d_{h} ( i )}^{i} x^{h} ( r,j )^{T}Q_{h}^{k}x^{h} ( r,j ) \alpha ^{i - r}, $$
$$V_{3k}^{h} \bigl( x^{h} ( i,j ) \bigr) = \sum _{r = i - d_{hH}}^{i - 1} x^{h} ( r,j )^{T}W_{h}^{k}x^{h} ( r,j ) \alpha ^{i - r}, $$
$$V_{4k}^{h} \bigl( x^{h} ( i,j ) \bigr) = \sum _{s = - d_{hH} + 1}^{ - d_{hL}} \sum _{r = i + s}^{i - 1} x^{h} ( r,j )^{T}Q_{h}^{k}x^{h} ( r,j ) \alpha ^{i - r}, $$
$$V_{5k}^{h} \bigl( x^{h} ( i,j ) \bigr) = d_{hH}\sum_{s = - d_{hH}}^{ - 1} \sum _{r = i + s}^{i - 1} \eta ^{h} ( r,j )^{T}R_{h}^{k}\eta ^{h} ( r,j ) \alpha ^{i - r}, $$
$$V_{1k}^{v} \bigl( x^{v} ( i,j ) \bigr) = x^{v} ( i,j )^{T}P_{v}^{k}x^{v} ( i,j ),$$
$$V_{2k}^{v} \bigl( x^{v} ( i,j ) \bigr) = \sum_{t = j - d_{v} ( j )}^{j} x^{v} ( i,s )^{T}Q_{v}^{k}x^{v} ( i,s ) \alpha ^{j - t}, $$
$$V_{3k}^{v} \bigl( x^{v} ( i,j ) \bigr) = \sum _{t = j - d_{vH}}^{j - 1} x^{v} ( i,t )^{T}W_{v}^{k}x^{v} ( i,t ) \alpha ^{j - t}, $$
$$V_{4k}^{v} \bigl( x^{v} ( i,j ) \bigr) = \sum _{s = - d_{vH} + 1}^{ - d_{vL}} \sum _{t = j + s}^{j - 1} x^{v} ( i,t )^{T}Q_{v}^{k}x^{v} ( i,t ) \alpha ^{j - t}, $$
$$V_{5k}^{v} \bigl( x^{v} ( i,j ) \bigr) = d_{vH}\sum_{s = - d_{vH}}^{ - 1} \sum _{t = j + s}^{j - 1} \eta ^{v} ( i,t )^{T}R_{v}^{k}\eta ^{v} ( i,t ) \alpha ^{j - t}, $$
$$\eta ^{h} ( r,j ) = \left [ \begin{array}{c@{\quad }c} x^{h} ( r,j )^{T} & \delta ^{h} ( r,j )^{T} \end{array} \right ]^{T}, \qquad \eta ^{v} ( i,t ) = \left [ \begin{array}{c@{\quad }c} x^{v} ( i,t )^{T} & \delta ^{v} ( i,t )^{T} \end{array} \right ]^{T}, $$
$$\delta ^{h} ( r,j ) = x^{h} ( r + 1,j ) - x^{h} ( r,j ),\qquad \delta ^{v} ( i,t ) = x^{v} ( i,t + 1 ) - x^{v} ( i,t ), $$

where

are real matrices to be determined.

Then we have

(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)

By Lemma 2, it can be obtained from (19) and (24) that

(25)
(26)

Denote

$$\varLambda _{1} = \operatorname{diag} \bigl\{ ( d_{hH} - d_{hL} )I_{h}, ( d_{vH} - d_{vL} )I_{v} \bigr\}, $$
$$\varLambda _{2} = \operatorname{diag} \bigl\{ \alpha ^{1 + d_{hH}}I_{h},\alpha ^{1 + d_{vH}}I_{v} \bigr\}, \qquad \varLambda _{3} = \operatorname{diag} \bigl\{ \alpha d_{hH}^{2}I_{h},\alpha d_{vH}^{2}I_{v} \bigr\}. $$

From (25) and (26), we obtain the following relationship:

(27)

where

In addition, applying Lemma 1, inequality (8) is equivalent to the following inequality:

$$\left ( \begin{array}{c@{\quad }c@{\quad }c@{\quad }c} \varPsi _{11} & \varPsi _{12} & \varLambda _{2}R_{3}^{k} & - \varLambda _{2}R_{2}^{k} \\ * & \varPsi _{22} & 0 & 0 \\ * & * & \varPsi _{33} & \varLambda _{2}R_{2}^{k} \\ \noalign{\vspace*{4pt}} * & * & * & - \varLambda _{2}R_{1}^{k} \end{array} \right ) < 0. $$

Thus, it is easy to obtain

$$ V_{k}^{h} ( i + 1,j ) + V_{k}^{v} ( i,j + 1 ) < \alpha \bigl( V_{k}^{h} ( i,j ) + V_{k}^{v} ( i,j ) \bigr). $$
(28)

Notice that for any nonnegative integer D>z=max(z 1,z 2), one has that V h(0,D)=V v(D,0)=0. Then summing up both sides of (28) from D−1 to 0 with respect to j and 0 to D−1 with respect to i, one gets

(29)

Assume that the switching number of σ(i,j) on an interval [z,D) is υ=N σ(i,j)(z,D), and let (i κυ+1,j κυ+1),(i κυ+2,j κυ+2),…,(i κ ,j κ ) denote the switching points of σ(i,j) over the interval [z,D). Thus, denoting m i =i i +j i , i=κυ+1,…,κ, it follows from (10) and (29) that

(30)

Notice from (14) that there exist two positive constants a and b(a<b) such that

(31)

Combining (30) and (31), we obtain

$$ \sum_{i + j = D} \bigl \Vert x ( i,j ) \bigr \Vert ^{2} < \frac{b}{a}e^{ - ( - \frac{\ln \chi}{\tau _{a}} - \ln \alpha ) ( D - z )}\sum _{i + j = z} \bigl \Vert x ( i,j ) \bigr \Vert _{C}^{2}. $$
(32)

By Definition 1, it follows from (9) that 2D discrete switched system (1) is exponentially stable. The proof is completed. □

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, S., Xiang, Z. Delay-Dependent Stability for Discrete 2D Switched Systems with State Delays in the Roesser Model. Circuits Syst Signal Process 32, 2821–2837 (2013). https://doi.org/10.1007/s00034-013-9600-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9600-9

Keywords

Navigation