Skip to main content
Log in

Time Delay Estimation Method Based on Canonical Correlation Analysis

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The localization of sources has numerous applications. To find the position of sources, the relative delay between two or more received signals for the direct signal must be determined. The generalized cross-correlation method is the most popular technique; however, an approach based on eigenvalue decomposition (EVD) is another popular one that utilizes the eigenvector of the minimum eigenvalue. The performance of the eigenvalue decomposition (EVD) based method degrades in low SNR and reverberation, because it is difficult to select a single eigenvector for the minimum eigenvalue. In this paper, we propose a new adaptive algorithm based on Canonical Correlation Analysis (CCA) to extend the operation SNR to the lower SNR and reverberation. The proposed algorithm uses an eigenvector that corresponds to the maximum eigenvalue in the generalized eigenvalue equation (GEVD). The estimated eigenvector contains all required information for time delay estimation. We have performed simulations with uncorrelated, correlated noise and reverberation for several SNRs, to show that time delays can be more accurately estimated (especially for low SNR) a CCA based algorithm versus the adaptive EVD algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. F.R. Bach, M.I. Jordan, Kernel independent component analysis. J. Mach. Learn. Res. 3, 1–48 (2002)

    MathSciNet  Google Scholar 

  2. J. Benesty, Adaptive eigenvalue decomposition algorithm for passive acoustic source localization. J. Acoust. Soc. Am. 107, 384–391 (2000)

    Article  Google Scholar 

  3. M. Borga, Learning multidimensional signal processing. PhD thesis, Linköping University, Linköping, Sweden (1998)

  4. M.S. Brandstein, A pitch-based approach to time-delay estimation of reverberant speech, in Proc. IEEE ASSP Workshop Applications. Signal Processing Audio Acoustics, New Paltz, NY (1997), pp. 19–22

    Google Scholar 

  5. G.C. Carter, Coherence and Time Delay Estimation: An Applied Tutorial for Research, Development, Test and Evaluation Engineers (IEEE Press, New York, 1993)

    Google Scholar 

  6. B. Champagne, S. Bédard, A. Stéphenne, Performance of timedelay estimation in presence of room reverberation. IEEE Trans. Speech Audio Process. 4, 148–152 (1996)

    Article  Google Scholar 

  7. Z. Chen, S. Haykin, J.J. Eggermont, S. Becker, Correlative Learning, a Basis for Brain and Adaptive Systems (Wiley, Hoboken, 2007)

    Google Scholar 

  8. B.Y. Choi, Z. Bien, Sliding-windowed weighted recursive least-squares method for parameter estimation. Electron. Lett. 25, 1381–1382 (1989)

    Article  MATH  Google Scholar 

  9. M. Cobos, J.J. Lopez, Two-microphone separation of speech mixtures based on interclass variance maximization. J. Acoust. Soc. Am. 127, 1661–1672 (2010)

    Article  Google Scholar 

  10. M. Cobos, J.J. Lopez, D. Martinez, Two-microphone multi-speaker localization based on a Laplacian mixture model. Digit. Signal Process. 21, 66–76 (2011)

    Article  Google Scholar 

  11. M. Cobos, A. Marti, J.J. Lopez, A modified SRP-PHAT functional for robust realtime sound source localization with scalable spatial sampling. IEEE Signal Process. Lett. 18, 71–74 (2011)

    Article  Google Scholar 

  12. S. Doclo, M. Moonen, Robust adaptive time delay estimation for speaker localization in noisy and reverberant acoustic environments. EURASIP J. Appl. Signal Process. 11, 1110–1124 (2003)

    Google Scholar 

  13. A. Dogandzic, A. Nehorai, Finite-length MIMO equalization using canonical correlation analysis. IEEE Trans. Signal Process. 50, 984–989 (2002)

    Article  Google Scholar 

  14. A. Dogandzic, A. Nehorai, Generalized multivariate analysis of variance; a unified framework for signal processing in correlated noise. IEEE Signal Process. Mag. 20, 39–54 (2003)

    Article  Google Scholar 

  15. F.A. Everest, The Master Handbook of Acoustics, 4th edn. (McGraw-Hill, New York, 2001)

    Google Scholar 

  16. C. Faller, J. Merimaa, Source localization in complex listening situations: selection of binaural cues based on interaural coherence. J. Acoust. Soc. Am. 116, 3075–3089 (2004)

    Article  Google Scholar 

  17. J.F. Ferreira, C. Pinho, J. Dias, Implementation and calibration of a Bayesian binaural system for 3D localisation, in IEEE International Conference on Robotics and Biomimetics (2008), pp. 1722–1727

    Google Scholar 

  18. O. Friman, M. Borga, P. Lundberg, H. Knutsson, Adaptive analysis of fMRI data. NeuroImage 19, 837–845 (2003)

    Article  Google Scholar 

  19. P. Giraudet, H. Glotin, Real-time 3D tracking of whales by echo-robust precise TDOA estimates with a widely-spaced hydrophone array. Appl. Acoust. 67, 1106–1117 (2006)

    Article  Google Scholar 

  20. D. Havelock, S. Kuwano, M. Vorlander, Handbook of Signal Processing in Acoustics (Springer, Heidelberg, 2008)

    Book  MATH  Google Scholar 

  21. S. Haykin, Adaptive Filter Theory, 4th edn. (Prentice Hall, Upper Saddle River, 2002)

    Google Scholar 

  22. H. Hotelling, Relations between two sets of variates. Biometrika 28, 321–377 (1936)

    MATH  Google Scholar 

  23. Y. Huang, J. Benesty, A class of frequency-domain adaptive approaches to blind multichannel identification. IEEE Trans. Signal Process. 51, 11–24 (2003)

    Article  MathSciNet  Google Scholar 

  24. Y. Huang, J. Benesty, J. Chen, Acoustic MIMO Signal Processing (Springer, Berlin, 2006)

    MATH  Google Scholar 

  25. C.H. Knapp, G.C. Carter, The generalized correlation method for estimation of time delay. IEEE Trans. Acoust. Speech Signal Process. 24, 320–327 (1976)

    Article  Google Scholar 

  26. E. Lehmann, Image-source method: Matlab code implementation (2012), http://www.eric-lehmann.com/. Accessed 10 Oct. 2012

  27. E. Lehmann, A. Johansson, Prediction of energy decay in room impulse responses simulated with an image-source model. J. Acoust. Soc. Am. 124, 269–277 (2008)

    Article  Google Scholar 

  28. I. Markovic, I. Petrovic, Speaker localization and tracking with a microphone array on a mobile robot using von Mises distribution and particle filtering. J. Robot. Auton. Syst. 58, 1185–1196 (2010)

    Article  Google Scholar 

  29. R. Martin, U. Heute, C. Antweiler, Acoustic source localization with microphone arrays, in Advances in Digital Speech Transmission (Wiley, New York, 2008)

    Chapter  Google Scholar 

  30. T. May, S. van de Par, A. Kohlrausch, A probabilistic model for robust localization based on a binaural auditory front-end. IEEE Trans. Audio Speech Lang. Process. 19, 1–13 (2011)

    Article  Google Scholar 

  31. M. Moonen, P.V. Dooren, J. Vandewalle, A systolic algorithm for QSVD updating. Signal Process. 25, 203–213 (1991)

    Article  MATH  Google Scholar 

  32. R.P. Morrissey, J. Ward, N. DiMarzio, S. Jarvis, D.J. Moretti, Passive acoustic detection and localization of sperm whales (Physeter macrocephalus) in the tongue of the ocean. Appl. Acoust. 67, 1091–1105 (2006)

    Article  Google Scholar 

  33. J.C. Murray, H. Erwin, S. Wermter, Robotics sound-source localization and tracking using interaural time difference and cross-correlation, in Proceedings of Neurobotics Workshop, Ulm, Germany (2004), pp. 89–97

    Google Scholar 

  34. R. Nath, Adaptive echo cancellation based on a multipath model of acoustic channel. Circuits Syst. Signal Process. (2012). doi:10.1007/s00034-012-9529-4

    Google Scholar 

  35. H.C. So, On time delay estimation using an FIR filter. Signal Process. 81, 1777–1782 (2001)

    Article  MATH  Google Scholar 

  36. E. Tiana-Roig, F. Jacobsen, E. Fernandez Grande, Beamforming with a circular microphone array for localization of environmental noise sources. J. Acoust. Soc. Am. 128, 3535–3542 (2010)

    Article  Google Scholar 

  37. V.M. Trifa, A. Koene, J. Moren, G. Cheng, Real-time acoustic source localization in noisy environments for human-robot multimodal interaction, in The 16th IEEE International Symposium on Robot and Human Interactive Communication (2007), pp. 393–398

    Chapter  Google Scholar 

  38. R.M. Udrea, D.N. Vizireanu, S. Ciochina, An improved spectral subtraction method for speech enhancement using a perceptual weighting filter. Digit. Signal Process. 18, 581–587 (2008)

    Article  Google Scholar 

  39. J. Via, I. Santamaria, J. Perez, A learning algorithm for adaptive canonical correlation analysis of several data sets. Neural Netw. 20, 139–152 (2007)

    Article  MATH  Google Scholar 

  40. D.N. Vizireanu, R.O. Preda, Is “five-point” estimation better than “three-point” estimation? Measurement 46, 840–842 (2013)

    Article  Google Scholar 

  41. D. Wang, F. Michel, Fundamental limit of OFDM range estimation in a separable multipath environment. Circuits Syst. Signal Process. 31, 1215–1227 (2012)

    Article  Google Scholar 

  42. Y.V. Zakharov, Low-complexity RLS algorithms using dichotomous coordinate descent iterations. IEEE Trans. Signal Process. 56, 3150–3161 (2008)

    Article  MathSciNet  Google Scholar 

  43. W. Zhang, B. Rao, A two microphone-based approach for source localization of multiple speech sources. IEEE Trans. Audio Speech Lang. Process. 18, 1913–1928 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-seok Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lim, Js., Pang, HS. Time Delay Estimation Method Based on Canonical Correlation Analysis. Circuits Syst Signal Process 32, 2527–2538 (2013). https://doi.org/10.1007/s00034-013-9578-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9578-3

Keywords

Navigation