Skip to main content
Log in

Flow-induced vortex field generated by a thin oscillating plate in an aeroacoustics framework

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The authors study the structure of the vortex sheet generated by a thin rectangular plate harmonically oscillating in a flow of non-viscous fluid. In frames of the Lighthill–Curle and Powell aeroacoustic theories, it is shown that the shedding vortices determine the magnitude of the generated sound. The problem is reduced to a dual integral equation which is solved numerically. The solution defines the sound of the load, as well as the components of the vortex vector over the sheet. Some examples of the numerical treatment are shown for various combinations of physical parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldstein, M.E.: Aeroacoustics. McGraw-Hill Inc, New York (1976). ISBN-13: 9780070236851

    MATH  Google Scholar 

  2. Blake, W.K.: Mechanics of Flow-Induced Sound and Vibration, vol. 1–2. Academic, London (1986). ISBN-13: 9780121035013, 9780121035020

    MATH  Google Scholar 

  3. Howe, M.S.: Acoustics of Fluid-Structure Interactions. Cambridge University Press, Cambridge (1998). ISBN-13: 9780521633208

    Book  Google Scholar 

  4. Howe, M.S.: Theory of Vortex Sound. Cambridge University Press, Cambridge (2002). ISBN-13: 9780521012232

    Book  Google Scholar 

  5. Brooks, T.F., Hodgson, T.H.: Trailing edge noise prediction from measured surface pressures. J. Sound Vib. 78(1), 69–117 (1981). https://doi.org/10.1016/S0022-460X(81)80158-7

    Article  Google Scholar 

  6. Chase, D.M.: Sound radiated by turbulent flow off a rigid half-plane as obtained from a wavevector spectrum of hydrodynamic pressure. J. Acoust. Soc. Am. 52, 1011–1023 (1972). https://doi.org/10.1121/1.1913170

    Article  MATH  Google Scholar 

  7. Howe, M.S.: Edge-source acoustic Green’s function for an airfoil of arbitrary chord, with application to trailing-edge noise. Q. J. Mech. Appl. Math. 54(1), 139–155 (2001). https://doi.org/10.1093/qjmam/54.1.139

    Article  MATH  Google Scholar 

  8. Marsden, A.L., Wang, M., Dennis, J.E., Moin, P.: Trailing-edge noise reduction using derivative-free optimization and large-eddy simulation. J. Fluid Mech. 572, 13–36 (2007). https://doi.org/10.1017/S0022112006003235

    Article  MathSciNet  MATH  Google Scholar 

  9. Katz, J.: Low-Speed Aerodynamics: From Wing Theory to Panel Methods. McGraw-Hill Series in Aeronautical and Aerospace Engineering. McGraw-Hill, New York (1991). ISBN-13: 9780070504462

    Google Scholar 

  10. Jones, M.A.: The separated flow of an inviscid fluid around a moving flat plate. J. Fluid Mech. 496, 405–441 (2003). https://doi.org/10.1017/S0022112003006645

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, G.D., Wu, G.X.: Boundary element simulation of inviscid flow around an oscillatory foil with vortex sheet. Eng. Anal. Bound. Elem. 37(5), 825–835 (2013). https://doi.org/10.1016/j.enganabound.2013.02.008

    Article  MathSciNet  MATH  Google Scholar 

  12. Powell, A.: Theory of vortex sound. J. Acoust. Soc. Am. 36(1), 177–195 (1964). https://doi.org/10.1121/1.1918931

    Article  MathSciNet  Google Scholar 

  13. Bisplinghoff, R.L., Ashley, H., Halfman, R.L.: Aeroelasticity. Addison-Wesley Educational Publishers Inc, Glenview (1955). ISBN-13: 9780201005950

    MATH  Google Scholar 

  14. Sumbatyan, M.A., Tarasov, A.E.: A mathematical model for the propulsive thrust of the thin elastic wing harmonically oscillating in a flow of non-viscous incompressible fluid. Mech. Res. Commun. 68, 83–88 (2015). https://doi.org/10.1016/j.mechrescom.2015.02.005

    Article  Google Scholar 

  15. Wu, L., Jing, X., Sun, X.: Prediction of vortex-shedding noise from the blunt trailing edge of a flat plate. J. Sound Vib. 408, 20–30 (2017). https://doi.org/10.1016/j.jsv.2017.07.013

    Article  Google Scholar 

  16. Lee, G.-S., Cheong, Ch.: Frequency-domain prediction of broadband trailing edge noise from a blunt flat plate. J. Sound Vib. 332, 20–30 (2013). https://doi.org/10.1016/j.jsv.2013.05.005

    Article  Google Scholar 

  17. Popuzin, V.V., Sumbatyan, M.A., Tarasov, A.E.: A fast numerical algorithm for a basic dual integral equation of the flapping wing in a flow of non-viscous incompressible fluid. J. Comput. Appl. Math. 344, 457–472 (2018)

    Article  MathSciNet  Google Scholar 

  18. Pierce, A.D.: Acoustics. An Introduction to its Physical Principles and Applications. Acoustical Society of America, New York (1991)

    Google Scholar 

  19. Tikhonov, A.N., Samarskii, A.A.: Equations of Mathematical Physics. Pergamon Press, Oxford (1963). ISBN-13: 9780080102269

    MATH  Google Scholar 

  20. Gakhov, F.D.: Boundary Value Problems. Dover Publications, New York (1990). ISBN-13: 9780486662756

    MATH  Google Scholar 

  21. Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Volume I: Properties and Operations. Academic, London (1964)

    MATH  Google Scholar 

  22. Sumbatyan, M.A., Scalia, A.: Equations of Mathematical Diffraction Theory. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  23. Prudnikov, A.P., Brychkov, Y.A., Marichev, O.I.: Integrals and Series, vol. 1–2. Gordon & Breach Science Publishers, London (1986). ISBN-13: 9782881240973

    MATH  Google Scholar 

  24. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover Publications, New York (1965). ISBN-13: 9780486612720

    MATH  Google Scholar 

  25. Hilbert, D., Courant, R.: Methods of Mathematical Physics, vol. 1–2. Wiley-VCH, New York (1989). ISBN-13: 9780471504474, 9780471504399

    MATH  Google Scholar 

  26. Belotserkovsky, S.M., Lifanov, I.K.: Method of Discrete Vortices. CRC Press, Boca Raton (1992). ISBN-13: 9780849393075

    Google Scholar 

  27. Samko, S.: Hypersingular Integrals and Their Applications. Taylor & Francis, New York (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The present work is a result of the visiting professorship of Prof. M. A. Sumbatyan from the Southern Federal University, Russia, at the University of Salerno, Italy, for a two-week period on May–June, 2017, supported by the Italian National Group of Mathematical Physics (GNFM-INdAM). The second author would also like to note that this work is in frame of the topic of Project 9.5794.2017/8.9 (Russian Ministry for Education and Science). The authors express their gratitude to the anonymous reviewer for his/her very helpful critical comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Sumbatyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zampoli, V., Sumbatyan, M.A. Flow-induced vortex field generated by a thin oscillating plate in an aeroacoustics framework. Z. Angew. Math. Phys. 70, 33 (2019). https://doi.org/10.1007/s00033-019-1081-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-019-1081-7

Mathematics Subject Classification

Keywords

Navigation