Skip to main content
Log in

Stabilization and asymptotic behavior of a generalized telegraph equation

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

We analyze the stability of different models of the telegraph equation set in a real interval. They correspond to the coupling between a first-order hyperbolic system and a first-order differential equation of parabolic type. We show that some models have an exponential decay rate, while other ones are only polynomially stable. When the parameters are constant, we show that the obtained polynomial decay is optimal and in the case of an exponential decay that the decay rate is equal to the spectral abscissa. These optimality results are based on a careful spectral analysis of the operator. In particular, we characterize its full spectrum that is made of a discrete set of eigenvalues and an essential spectrum reduced to one point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aassila M., Cavalcanti M.M., Soriano J.A.: Asymptotic stability and energy decay rates for solution of the wave equation with memory in a star-shaped domain. SIAM J. Control Optim. 38, 1581–1602 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alabau-Boussouira F., Cannarsa P., Sforza D.: Decay estimates for second order evolution equations with memory. J. Funct. Anal. 254(5), 1342–1372 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andrade D., Rivera J.M.: Exponential decay of non-linear wave equation with viscoelastic boundary condition. Math. Meth. Appl. Sci. 23, 41–60 (2000)

    Article  MATH  Google Scholar 

  4. Arendt W., Batty C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans. Am. Math. Soc. 305(2), 837–852 (1988)

    Article  MathSciNet  Google Scholar 

  5. Bátkai A., Engel K.-J., Prüss J., Schnaubelt R.: Polynomial stability of operator semigroups. Math. Nachr. 279(13-14), 1425–1440 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Batty C.J.K., Duyckaerts T.: Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8(4), 765–780 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Borichev A., Tomilov Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2), 455–478 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cavalcanti M.M., Guesmia A.: General decay rates of solutions to a nonlinear wave equation with boundary condition of memory type. Differ. Integr. Equ. 18, 583–600 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Cavalcanti M.M, Oquendo H.P: Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim 42(4), 1310–1324 (2003) (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cox S., Zuazua E.: The rate at which energy decays in a damped string. Comm. Partial Differ. Equ. 19(1-2), 213–243 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  11. Dafermos C.M.: An abstract Volterra equation with applications to linear viscoelasticity. J. Differ. Equ. 7, 554–569 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dafermos C.M.: Asymptotic stability in viscoelasticity. Arch. Ration. Mech. Anal. 37, 297–308 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fabrizio M., Morro A.: Viscoelastic relaxation functions compatible with thermodynamics. J. Elast. 19(1), 63–75 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  14. Fabrizio M., Polidoro S.: Asymptotic decay for some differential systems with fading memory. Appl. Anal. 81(6), 1245–1264 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  15. Huang F.L.: Characteristic conditions for exponential stability of linear dynamical systems in Hilbert spaces. Ann. Differ. Equ. 1(1), 43–56 (1985)

    MATH  Google Scholar 

  16. Imperiale S., Joly P.: Error estimates for 1D asymptotic models in coaxial cables with non-homogeneous cross-section. Adv. Appl. Math. Mech. 4(6), 647–664 (2012)

    MATH  MathSciNet  Google Scholar 

  17. Imperiale S., Joly P.: Mathematical modeling of electromagnetic wave propagation in heterogeneous lossy coaxial cables with variable cross section. Appl. Numer. Math. 79, 42–61 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  18. Littman, W., Markus, L.: Some recent results on control and stabilization of flexible structures. In: COMCON Workshop, Montpellier (1987)

  19. Liu Z., Rao B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew. Math. Phys. 56(4), 630–644 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Nicaise S.: Stabilization and asymptotic behavior of dispersive medium models. Syst. Control Lett. 61(5), 638–648 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  21. Prüss J.: On the spectrum of C 0-semigroups. Trans. Am. Math. Soc. 284(2), 847–857 (1984)

    Article  MATH  Google Scholar 

  22. Wehbe A.: Rational energy decay rate for a wave equation with dynamical control. Appl. Math. Lett. 16(3), 357–364 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serge Nicaise.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicaise, S. Stabilization and asymptotic behavior of a generalized telegraph equation. Z. Angew. Math. Phys. 66, 3221–3247 (2015). https://doi.org/10.1007/s00033-015-0568-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-015-0568-0

Mathematics Subject Classification

Keywords

Navigation