Skip to main content
Log in

Stokes flow in a two-dimensional micro-device combined by a cross-slot and a microfluidic four-roll mill

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The flow structures in a novel microfluidics device (CS-MFRM) combining a cross-slot (CS) and a microfluidics four-roll mill (MFRM) have been investigated through a two-dimensional boundary element method. By changing the volume flow rates at various inlets of a CS-MFRM, diverse flow structures can be generated. Some of them are proposed to be employed to achieve some functions in the fabrication process of anisotropic particles. The stagnant points and eddies in those flows are particularly discussed since they are critical to trap and/or rotate droplets. Energy consumption of eddies generated in branches in some flow structures is also investigated in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

μ :

The viscosity of continuous phase

λ :

The viscosity ratio of the droplet to the continuous phase

G :

Shear rate

p :

Pressure

u :

Velocity vector

f :

Surface stress

S ij :

Fundamental solution of the two-dimensional Stokes equations

T ijk :

Associated stress kernel of the fundamental solution

Q :

Volume flow rate in a channel

w 0 :

Half width of a channel

r c :

Radius of central circular cavity

References

  1. Helen S., Delai L.C., Rustem F.I.: Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006)

    Article  Google Scholar 

  2. Whitesides G.M.: The origins and the future of microfluidics. Nature 442, 368–373 (2006)

    Article  Google Scholar 

  3. Teh S.Y., Lin R., Hung L.H., Lee A.P.: Droplet microfluidics. Lab Chip 8, 198–220 (2008)

    Article  Google Scholar 

  4. Wang J.T., Wang J., Han J.J.: Fabrication of advanced particles and particle-based materials assisted by droplet-based microfluidics. Small 7, 1728–1754 (2011)

    Article  Google Scholar 

  5. Lingxin C., Sangyeop L., Jaebum K.L., Eun C.: Continuous dynamic flow micropumps for microfluid manipulation. J. Micromech. Microeng. 18, 013001 (2008)

    Article  Google Scholar 

  6. Um E., Park J.K.: A microfluidic abacus channel for controlling the addition of droplets. Lab Chip 9, 207–212 (2009)

    Article  Google Scholar 

  7. Dendukuri D., Doyle P.S.: The synthesis and assembly of polymeric microparticles using microfluidics. Adv. Mater. 21, 1–16 (2009)

    Article  Google Scholar 

  8. Aubin J., Ferrando M., Jiricny V.: Current methods for characterising mixing and flow in microchannels. Chem. Eng. Sci. 65, 2065–2093 (2010)

    Article  Google Scholar 

  9. Hao G., Michel H.G.D., Frieder M.: Droplets formation and merging in two-phase flow microfluidics. Int. J. Mol. Sci. 12, 2572–2597 (2011)

    Article  Google Scholar 

  10. Seemann R., Brinkmann M., Pfohl T., Herminghaus S.: Droplet based microfluidics. Rep. Prog. Phys. 75, 016601 (2012)

    Article  Google Scholar 

  11. Tanyeri M., Johnson-Chavarria E.M., Schroeder C.M.: Hydrodynamic trap for single particles and cells. Appl. Phys. Lett. 96, 224101 (2010)

    Article  Google Scholar 

  12. Janssen J.J.M., Boon A., Agterof W.G.M.: Influence of dynamic interfacial properties on droplet breakup in plane hyperbolic flow. AICHE J. 43, 1436–1447 (1997)

    Article  Google Scholar 

  13. Perkins T.T., Smith D.E., Chu S.: Single polymer dynamics in an elongational flow. Science 276, 2016–2021 (1997)

    Article  Google Scholar 

  14. Schroeder C.M., Babcock H.P.E., Shaqfeh S.G., Chu S.: Observation of polymer conformation hysteresis in extensional flow. Science 301, 1515–1519 (2003)

    Article  Google Scholar 

  15. Hellou M., Bach T.D.P.: Stokes flow in a junction of two-dimensional orthogonal channels. Z. Angew. Math. Phys. 62, 135–147 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lee J.S., Dylla-Spears R., Teclemariam N.P., Muller S.J.: Microfluidic four-roll mill for all flow types. Appl. Phys. Lett. 90, 074103 (2007)

    Article  Google Scholar 

  17. Wang J.T., Han J.J., Yu D.M.: Numerical studies of geometry effects of a two-dimensional microfluidic four-roll mill on droplet elongation and rotation. Eng. Anal. Bound. Elem. 36, 1453–1464 (2012)

    Article  Google Scholar 

  18. Lee J.S., Shaqfeh E.S.G., Muller S.J.: Dynamics of DNA tumbling in shear to rotational mixed flows: pathways and periods. Phys. Rev. E 75, 040802 (2007)

    Article  Google Scholar 

  19. Deschamps J., Kantsler V., Segre E., Steinberg V.: Dynamics of a vesicle in general flow. PNAS 106, 11444–11447 (2009)

    Article  MATH  Google Scholar 

  20. Young Y.N., Blawzdziewicz J., Cristini V., Goodman R.H.: Hysteretic and chaotic dynamics of viscous drops in creeping flows with rotation. J Fluid Mech. 607, 209–234 (2008)

    MATH  MathSciNet  Google Scholar 

  21. Wang, J.T., Tao, J., Han, J.J.: Hydrodynamic Control of Droplets Coalescence in Microfluidic Devices to Fabricate Anisotropic Particles Through Boundary Element Method (unpublished)

  22. Shankar P.N.: The eddy structure in Stokes flow in a cavity. J. Fluid Mech. 250, 371–383 (1993)

    Article  MATH  Google Scholar 

  23. Georgiadou M., Mohr R., Alkire R.C.: Local mass transport in two-dimensional cavities in laminar shear flow. J. Electrochem. Soc. 147, 3021–3028 (2000)

    Article  Google Scholar 

  24. Lutz B.R., Chen J., Schwartz D.T.: Hydrodynamic Tweezers: 1. Non-contact cell trapping in a laminar oscillating flow. Anal. Chem. 78, 5429–5435 (2006)

    Article  Google Scholar 

  25. Lin C.M., Lai Y.S., Liu H.P., Chen C.Y., Wo A.M.: Trapping of bioparticles via microvortices in a microfluidic device for bioassay applications. Anal. Chem. 80, 8937–8945 (2008)

    Article  Google Scholar 

  26. Pozrikidis C.: Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  27. Youngren G.K., Acrivos A.: On the shape of a gas bubble in a viscous extensional flow. J Fluid Mech. 76, 433–42 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  28. Muldowney G.P., Higdon J.J.L.: A spectral boundary element approach to three-dimensional Stokes flow. J. Fluid Mech. 298, 167–192 (1995)

    Article  MATH  Google Scholar 

  29. Liang J., Subramaniam S.: Computation of molecular electrostatics with boundary element methods. Biophys. J. 73, 1830–1841 (1997)

    Article  Google Scholar 

  30. Pozrikidis C.: Interfacial dynamics for Stokes flow. J Comput. Phys. 169, 250–301 (2001)

    Article  MATH  Google Scholar 

  31. Dimitrakopoulos P., Wang J.T.: A spectral boundary element algorithm for interfacial dynamics in two-dimensional Stokes flow based on Hermitian interfacial smoothing. Eng. Anal. Bound. Elem. 31, 646–656 (2007)

    Article  MATH  Google Scholar 

  32. Wang J.T., Liu J.X., Han J.J., Guan J.: Effects of complex internal structures on rheology of multiple emulsions particles in 2D from a boundary integral method. Phys. Rev. Lett. 110, 066001 (2013)

    Article  Google Scholar 

  33. Wang J.T, Liu J.X., Han J.J., Guan J.: Rheology investigation of the globule of multiple emulsions with complex internal structures through a boundary element method. Chem. Eng. Sci. 96, 87–97 (2013)

    Article  Google Scholar 

  34. Baroud C.N., Gallaire F., Dangla R.: Dynamics of microfluidic droplets. Lab Chip 10, 2032–2045 (2010)

    Article  Google Scholar 

  35. Stone H.A., Leal L.G.: Breakup of concentric double emulsion droplets in linear flows. J Fluid Mech. 211, 123–156 (1990)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingtao Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, J., Liu, J., Li, X. et al. Stokes flow in a two-dimensional micro-device combined by a cross-slot and a microfluidic four-roll mill. Z. Angew. Math. Phys. 66, 149–169 (2015). https://doi.org/10.1007/s00033-013-0396-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-013-0396-z

Mathematics Subject Classification (2000)

Keywords

Navigation