Skip to main content
Log in

Sharp nonexistence results of prescribed L 2-norm solutions for some class of Schrödinger–Poisson and quasi-linear equations

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

In this paper, we study the existence of minimizers for

$$F(u) = \frac{1}{2} \int_{\mathbb{R}^3} |\nabla u|^{2} {\rm d}x + \frac{1}{4} \int_{\mathbb{R}^3} \int_{\mathbb{R}^3} \frac{| u(x)|^2 | u(y)|^2}{| x-y|} {\rm d}x{\rm d}y-\frac{1}{p} \int_{\mathbb{R}^3}|u|^p {\rm d}x$$

on the constraint

$$S(c) = \{u \in H^1(\mathbb{R}^3) : \int_{\mathbb{R}^3}|u|^2 {\rm d}x = c\}$$

, where c >  0 is a given parameter. In the range \({p \in [3,\frac{10}{3}]}\) , we explicit a threshold value of c >  0 separating existence and nonexistence of minimizers. We also derive a nonexistence result of critical points of F(u) restricted to S(c) when c >  0 is sufficiently small. Finally, as a by-product of our approaches, we extend some results of Colin et al. (Nonlinearity 23(6):1353–1385, 2010) where a constrained minimization problem, associated with a quasi-linear equation, is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Azzollini A., Pomponio A., d’Avenia P.: On the Schrödinger–Maxwell equations under the effect of a general nonlinear term. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(2), 779–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ambrosetti A., Ruiz D.: Multiple bound states for the Schrödinger–Poisson problem. Commun. Contemp. Math. 10(3), 391–404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berestycki H., Lions P.L.: Nonlinear scalar field equations I. Arch. Ration. Mech. Anal. 82(4), 313–346 (1983)

    MathSciNet  MATH  Google Scholar 

  4. Bardos F., Golse A., Gottlieb D., Mauser N.: Mean field dynamics of fermions and the time-dependent Hartree–Fock equation. J. Math. Pures Appl. 82(6), 665–683 (2003)

    MathSciNet  MATH  Google Scholar 

  5. Bellazzini J., Siciliano G.: Stable standing waves for a class of nonlinear Schrödinger–Poisson equations. Z. Angew. Math. Phys. 62(2), 267–280 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bellazzini J., Siciliano G.: Scaling properties of functionals and existence of constrained minimizers. J. Funct. Anal. 261(9), 2486–2507 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bellazzini, J., Jeanjean, L., Luo, T.-J.: Existence and instability of standing waves with prescribed norm for a class of Schrödinger–Poisson equations, Proceedings of London Mathematical Society, to appear. See also arXiv:1111.4668v2 [math AP], 16 May 2012

  8. Caliari, M., Squassina, M.: On a bifurcation value related to quasilinear Schrödinger equations. J. Fixed Point Theory Appl. to appear. See also arXiv:1111.0526v3 [math.AP], 23 Dec 2011

  9. Colin M., Jeanjean L., Squassina M.: Stability and instability results for standing waves of quasilinear Schrödinger equations. Nonlinearity 23(6), 1353–1385 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. D’Aprile T., Mugnai D.: Solitary waves for nonlinear Klein–Gordon–Maxwell and Schrödinger–Maxwell equations. Proc. R. Soc. Edinb. Sect. A 134(5), 893–906 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kikuchi H.: Existence and stability of standing waves for Schrödinger–Poisson–Slater equation. Adv. Nonlinear Stud. 7(3), 403–437 (2007)

    MathSciNet  MATH  Google Scholar 

  12. Kikuchi H.: On the existence of solutions for elliptic system related to the Maxwell–Schrödinger equations. Nonlinear Anal. 67, 1445–1456 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kikuchi, H.: Existence and orbital stability of the standing waves for nonlinear Schrödinger equations via the variational method, Doctoral Thesis (2008)

  14. Lions, P.L.: The concentration-compactness principle in the calculus of variation. The locally compact case, part I and II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1, 109–145 and 223–283 (1984)

    Google Scholar 

  15. Lions P.L.: Solutions of Hartree–Fock equations for Coulomb systems. Commun. Math. Phys. 109(1), 33–97 (1987)

    Article  MATH  Google Scholar 

  16. Lieb E.H., Loss M.: Analysis, Second edition, Graduate Studies in Mathematics, 14. American Mathematical Society, Providence, RI (2001)

    Google Scholar 

  17. Lieb E.H., Simon B.: The Thomas–Fermi theory of atoms, molecules and solids. Adv. Math. 23(1), 22–116 (1977)

    Article  MathSciNet  Google Scholar 

  18. Mauser N.J.: The Schrödinger–Poisson-Xα equation. Appl. Math. Lett. 14(6), 759–763 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ruiz D.: The Schrödinger–Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237(2), 655–674 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ruiz D.: On the Schrödinger–Poisson–Slater system: behavior of minimizers, radial and nonradial cases. Arch. Rational Mech. Anal. 198(1), 349–368 (2010)

    Article  MATH  Google Scholar 

  21. Sanchez O., Soler J.: Long-time dynamics of the Schrödinger–Poisson–Slater system. J. Stat. Phys. 114(1–2), 179–204 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang Z., Zhou H.-S.: Positive solution for a nonlinear stationary Schrödinger–Poisson system in \({\mathbb{R}^3}\) . Discrete Continuous Dyn. Syst. 18(4), 809–816 (2007)

    Article  MATH  Google Scholar 

  23. Zhao L., Zhao F.: On the existence of solutions for the Schrödinger–Poisson equations. J. Math. Anal. Appl. 346(1), 155–169 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingjian Luo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeanjean, L., Luo, T. Sharp nonexistence results of prescribed L 2-norm solutions for some class of Schrödinger–Poisson and quasi-linear equations. Z. Angew. Math. Phys. 64, 937–954 (2013). https://doi.org/10.1007/s00033-012-0272-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0272-2

Mathematics Subject Classification (2000)

Keywords

Navigation