Skip to main content
Log in

Stokes flow between eccentric rotating spheres with slip regime

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The steady axisymmetric flow problem of a viscous fluid contained between two eccentric spheres that rotate about an axis joining their centers with different angular velocities is considered. A linear slip of Basset-type boundary condition at both surfaces of the spherical particle and the container is used. Under the Stokesian assumption, a general solution is constructed from the superposition of basic solutions in the spherical coordinate systems based on the inner solid particle and the spherical container. The boundary conditions on the particle’s surface and spherical container are satisfied by a collocation technique. Numerical results for the coupling coefficient acting on the particle are obtained with good convergence for various values of the ratio of particle-to-container radii, the relative distance between the centers of the particle and container, the slip coefficients and the relative angular velocity. In the limiting cases, the numerical values of the coupling coefficient for the solid sphere in concentric position with the container and when the particle is near the inner surface of the container are obtained, and the results are in good agreement with the available values in the literature. The variation of the coupling coefficient with respect the parameters considered are tabulated and displayed graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pedlosky J.: Axially symmetric motion of a stratified, rotating fluid in a spherical annulus of a narrow gape. J. Fluid Mech. 36, 401–415 (1969)

    Article  MATH  Google Scholar 

  2. Happel J., Brenner H.: Low Reynolds Number Hydrodynamics. Nijhoff, Dordrecht, The Netherlands (1983)

    Google Scholar 

  3. Nakabayashi K., Tsuchida Y.: Basic study on classification of fine particles in almost rigidly rotating flow (2nd report, dependence of Ekman layer and interior region on wall configuration of housing and rotor. Trans. Jpn. Soc. Mech. Eng. B 61(591), 3996–4003 (1995)

    Article  Google Scholar 

  4. Nakabayashi K., Tsuchida Y., Takeo K., Ono Y.: Basic study on classification of fine particles in almost rigidly rotating flow (3rd report, conditions of occurrence of a stable regime of almost rigidly rotating flow. Trans. Jpn. Soc. Mech. Eng. B 61(591), 4004–4010 (1995)

    Article  Google Scholar 

  5. Lee E., Huang Y.F., Hsu J.P.: Electrophoresis in a non-Newtonian fluid: sphere in a spherical cavity. J. Colloid Interface Sci. 258, 283–288 (2003)

    Article  Google Scholar 

  6. Lee E., Ming J.K., Hsu J.P.: Purely viscous flow of a shear-thinning fluid between two rotating spheres. Chem. Eng. Sci. 59, 417–424 (2004)

    Article  Google Scholar 

  7. Lamb H.: Hydrodynamics, 6th edn. Cambridge University Press, Cambridge (1932)

    MATH  Google Scholar 

  8. Jeffery G.B.: Steady rotation of a solid of revolution in a viscous fluid. Proc. Lond. Math. Soc. 14, 327–338 (1915)

    Google Scholar 

  9. Kanwal R.P.: Steady rotation of axially symmetric bodies in a viscous fluid. J. Fluid Mech. 10, 17–24 (1960)

    Article  MathSciNet  Google Scholar 

  10. Wakiya S.: Slow motion around two spheres. J. Phys. Soc. Jpn. 22, 1101–1109 (1967)

    Article  Google Scholar 

  11. O’Neill M.E.: Exact solutions of the equations of slow viscous flow generated by the asymmetrical motion of two spheres. Appl. Sci. Res. 21, 452–466 (1969)

    Article  Google Scholar 

  12. Nir A., Acrivos A.: On the creeping of two arbitrary-sized touching spheres in a linear shear field. J. Fluid Mech. 59, 209–223 (1973)

    Article  MATH  Google Scholar 

  13. Landau L.D., Lifshitz E.M.: Course of theoretical physics, vol. 6. Fluid Mechanics Pergamon Press, Pergamon (1959)

    Google Scholar 

  14. Munson B.R., Joseph D.D.: Viscous incompressible flow between concentric rotating sphere, Part 1. Basic flow. J. Fluid Mech. 49, 289–303 (1971)

    Article  MATH  Google Scholar 

  15. Munson B.R.: Viscous incompressible flow between eccentric coaxially rotating spheres. Phys. Fluids 17, 528–531 (1974)

    Article  MATH  Google Scholar 

  16. O’Neill M.E., Majumdar S.R.: Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spheres-part I: the determination of exact solutions for any values of the ratio of radii and separation parameters. J. Appl. Math. Phys. (ZAMP) 21, 164–179 (1970)

    Article  MATH  Google Scholar 

  17. O’Neill M.E., Majumdar S.R.: Asymmetrical slow viscous fluid motions caused by the translation or rotation of two spherespart II: asymptotic forms of the solutions when the minimum clearance between the spheres approaches zero. J. Appl. Math. Phys. (ZAMP) 21, 180–187 (1970)

    Article  Google Scholar 

  18. Cooley M.D.A.: The slow rotation in a viscous fluid of a sphere close to another fixed sphere about a diameter perpendicular to the line of centers. Quart. J. Mech. Appl. Math. 24, 237–250 (1971)

    Article  MATH  Google Scholar 

  19. Kamel M.T., ChanMan Fong C.F.: Micropolar fluid flow between two eccentric coaxially rotating spheres. Act. Mech. 99, 155–171 (1993)

    Article  MATH  Google Scholar 

  20. Srivastava, D.K.: Slow rotation of concentric spheres with source at their centre in a viscous fluid. J. Appl. Math. (2009) doi:10.1155/2009/740172

  21. Shankar P.N.: Exact solutions for Stokes flow in and around a sphere and between concentric spheres. J. Fluid Mech. 631, 363–373 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Jabari Moghadam A., Rahimi A.B.: A numerical study of flow and heat transfer between two rotating spheres with time-dependent angular velocities. J. Heat Transf. 130, 071703 (2008)

    Article  Google Scholar 

  23. Liu Q., Prosperetti A.: Wall effects on a rotating sphere. J. Fluid Mech. 657, 1–21 (2010)

    Article  MATH  Google Scholar 

  24. Keh H.J., Lee T.C.: Axisymmetric creeping motion of a slip spherical particle in a nonconcentric spherical cavity. Theor. Comput. Fluid Dyn. 24, 497–510 (2010)

    Article  MATH  Google Scholar 

  25. Kennard E.H.: Kinetic Theory of Gases. McGraw-Hill, New York (1938)

    Google Scholar 

  26. Hutchins D.K., Harper M.H., Felder R.L.: Slip correction measurements for solid spherical particles by modulated dynamic light scattering. Aerosol. Sci. Technol. 22, 202–218 (1995)

    Article  Google Scholar 

  27. Thompson P.A., Troian S.M.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362 (1997)

    Article  Google Scholar 

  28. O’Neill M.E., Ranger K.B., Brenner H.: Slip at the surface of a translating-rotating sphere bisected by a free surface bounding a semi-infinite viscous fluid: removal of the contact-line singularity. Phys. Fluids 29, 913–924 (1986)

    Article  MATH  Google Scholar 

  29. Basset A.B.: A Treatise on Hydrodynamics, Vol 2, pp. 247–248. Dover, New York (1961)

    Google Scholar 

  30. Navier, C.L.M.H.: Memoirs de l’Academie Royale des Sciences de l’Institut de France, vol. 1, pp. 414-416 (1823)

  31. Keh H.J., Chang J.H.: Boundary effects on the creeping-flow and thermophoretic motions of an aerosol particle in a spherical cavity. Chem. Eng. Sci. 53, 2365–2377 (1998)

    Article  Google Scholar 

  32. Tekasakul P., Tompson R.V., Loyalka S.K.: A numerical study of two coaxial axi-symmetric particles undergoing steady equal rotation in the slip regime. J. Appl. Math. Phys. (ZAMP) 50, 387–403 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  33. Neto C., Evans D.R., Bonaccurso E., Butt H.-J., Craig V.S.J.: Boundary slip in Newtonian liquids: a review of experimental studies. Rep. Progr. Phys. 68, 2859–2897 (2005)

    Article  Google Scholar 

  34. Suna H., Liu C.: The slip boundary condition in the dynamics of solid particles immersed in Stokesian flows. Solid State Commun. 150, 990–1002 (2010)

    Article  Google Scholar 

  35. Yang F.: Slip boundary condition for viscous flow over solid surfaces. Chem. Eng. Commun. 197, 544–550 (2010)

    Article  Google Scholar 

  36. Sherief H.H., Faltas M.S., Saad E.I.: Slip at the surface of a sphere translating perpendicular to a plane wall in micropolar fluid. J. Appl. Math. Phys. (ZAMP) 59, 293–312 (2008)

    Article  MathSciNet  Google Scholar 

  37. Sherief H.H., Faltas M.S., Ashmawy E.A.: Galerkin representations and fundamental solutions for an axisymmetric microstretch fluid flow. J. Fluid Mech. 619, 277–293 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Whitmer J.K., Luijten E.: Fluid-solid boundary conditions for multiparticle collision dynamics. J. Phys. Condens. Matter 22, 104106 (2010)

    Article  Google Scholar 

  39. Gluckman M.J., Pfeffer R., Weinbaum S.: A new technique for treating multiparticle slow viscous flow: axisymmetric flow past spheres and spheroids. J. Fluid Mech. 50, 705–740 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  40. Leichtberg S., Pfeffer R., Weinbaum S.: Stokes flow past finite coaxial clusters of spheres in a circular cylinder. Int. J. Multiph. Flow 3, 147–169 (1976)

    Article  Google Scholar 

  41. Ganatos P., Weinbaum S., Pfeffer R.: A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 1. Perpendicular motion. J. Fluid Mech. 99, 739–753 (1980)

    Article  MATH  Google Scholar 

  42. Ganatos P., Weinbaum S., Pfeffer R.: A strong interaction theory for the creeping motion of a sphere between plane parallel boundaries. Part 2. Parallel motion. J. Fluid Mech. 99, 755–783 (1980)

    Article  MATH  Google Scholar 

  43. Lu S.Y., Lee C.T.: Boundary effects on creeping motion of an aerosol particle in a non-concentric pore. Chem. Eng. Sci. 56, 5207–5216 (2001)

    Article  Google Scholar 

  44. Chen P.Y., Keh H.J.: Slow motion of a slip spherical particle parallel to one or two plane walls. J. Chin. Inst. Chem. Eng. 34, 123–133 (2003)

    MATH  Google Scholar 

  45. Lu S.Y., Lee C.T.: Creeping motion of a spherical aerosol particle in a cylindrical pore. Chem. Eng. Sci. 57, 1479–1484 (2002)

    Article  Google Scholar 

  46. Faltas M.S., Saad E.I.: Stokes flow past an assemblage of slip eccentric spherical particle-in-cell models. Math. Methods Appl. Sci. 34, 1594–1605 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  47. Bocquet L., Barrat J.-L.: Flow boundaries from nano- to micro-scales. Soft Matter 3, 685–693 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. I. Saad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Faltas, M.S., Saad, E.I. Stokes flow between eccentric rotating spheres with slip regime. Z. Angew. Math. Phys. 63, 905–919 (2012). https://doi.org/10.1007/s00033-012-0211-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-012-0211-2

Mathematics Subject Classification

Keywords

Navigation