Skip to main content
Log in

On the uniform stress state inside an inclusion of arbitrary shape in a three-phase composite

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

The stress field inside a two-dimensional arbitrary-shape elastic inclusion bonded through an interphase layer to an infinite elastic matrix subjected to uniform stresses at infinity is analytically studied using the complex variable method in elasticity. Both in-plane and anti-plane shear loading cases are considered. It is shown that the stress field within the inclusion can be uniform and hydrostatic under remote constant in-plane stresses and can be uniform under remote constant anti-plane shear stresses. Both of these uniform stress states can be achieved when the shape of the inclusion, the elastic properties of each phase, and the thickness of the interphase layer are properly designed. Possible non-elliptical shapes of inclusions with uniform hydrostatic stresses induced by in-plane loading are identified and divided into three groups. For each group, two conditions that ensure a uniform hydrostatic stress state are obtained. One condition relates the thickness of the interphase layer to elastic properties of the composite phases, while the other links the remote stresses to geometrical and material parameters of the three-phase composite. Similar conditions are analytically obtained for enabling a uniform stress state inside an arbitrary-shape inclusion in a three-phase composite loaded by remote uniform anti-plane shear stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Antipov Y.A., Schiavone P.: On the uniformity of stresses inside an inhomogeneity of arbitrary shape. IMA J. Appl. Math. 68, 299–311 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bjorkman G.S., Richards R.: Harmonic holes—an inverse problem in elasticity. ASME J. Appl. Mech. 43, 414–418 (1976)

    Article  MATH  Google Scholar 

  3. Bjorkman G.S., Richards R.: Harmonic holes for nonconstant fields. ASME J. Appl. Mech 46, 573–576 (1979)

    Article  MATH  Google Scholar 

  4. Cherepanov G.P.: Inverse problems of the plane theory of elasticity. J. Appl. Math. Mech. (PMM) 38, 915–931 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  5. Eshelby J.D.: The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc. R. Soc. Lond. A 241, 376–396 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  6. England A.H.: Complex Variable Methods in Elasticity. Wiley, London (1971)

    MATH  Google Scholar 

  7. Gao C.F., Noda N.: Faber series method for two-dimensional problems of an arbitrarily shaped inclusion in piezoelectric materials. Acta Mech. 171, 1–13 (2004)

    Article  MATH  Google Scholar 

  8. Gao X.-L.: A general solution of an infinite elastic plate with an elliptic hole under biaxial loading. Int. J. Press. Vessels Pip. 67, 95–104 (1996)

    Article  Google Scholar 

  9. Gao X.-L.: A mathematical analysis of the elasto-plastic anti-plane shear problem of a power-law material and one class of closed-form solutions. Int. J. Solids Struct. 33, 2213–2223 (1996)

    Article  MATH  Google Scholar 

  10. Gao X.-L.: A mathematical analysis for the plane stress problem of a power-law material. IMA J. Appl. Math. 60, 139–149 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gao X.-L.: On the complex variable displacement method in plane isotropic elasticity. Mech. Res. Commun. 31, 169–173 (2004)

    Article  MATH  Google Scholar 

  12. Gao X.-L., Ma H.M.: Strain gradient solution for Eshelby’s ellipsoidal inclusion problem. Proc. R. Soc. A 466, 2425–2446 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hardiman N.J.: Elliptic elastic inclusion in an infinite elastic plate. Q. J. Mech. Appl. Math. 7, 226–230 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  14. Luo, J.-C., Gao, C.-F.: Stress field of a coated arbitrary shape inclusion. Meccanica (2010). doi:10.1007/s11012-010-9363-3

  15. Markenscoff X.: Inclusions with constant eigenstress. J. Mech. Phys. Solids 46, 2297–2301 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Muskhelishvili N.I.: Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff, Groningen, The Netherlands (1953)

    MATH  Google Scholar 

  17. Ru C.Q.: Three-phase elliptical inclusions with internal uniform hydrostatic stresses. J. Mech. Phys. Solids 47, 259–273 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Ru C.Q.: Analytical solution for Eshelby’s problem of an inclusion of arbitrary shape in a plane or half-plane. ASME J. Appl. Mech. 66, 315–322 (1999)

    Article  MathSciNet  Google Scholar 

  19. Ru C.Q., Schiavone P., Mioduchowski A.: Uniformity of stresses within a three-phase elliptic inclusion in anti-plane shear. J. Elast. 52, 121–128 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Sadd M.H.: Elasticity: Theory, Applications, and Numerics. 2nd edn. Academic Press, Burlington, MA (2009)

    Google Scholar 

  21. Sendeckyj G.P.: Elastic inclusion problems in plane elastostatics. Int. J. Solids Struct. 6, 1535–1543 (1970)

    Article  MATH  Google Scholar 

  22. Slaughter W.S.: The Linearized Theory of Elasticity. Birkhäuser, Boston (2002)

    Book  MATH  Google Scholar 

  23. Tsukrov I., Novak J.: Effective elastic properties of solids with two-dimensional inclusions of irregular shape. Int. J. Solids Struct. 41, 6905–6924 (2004)

    Article  MATH  Google Scholar 

  24. Wang G.F., Schiavone P., Ru C.Q.: Harmonic shapes in finite elasticity under nonuniform loading. ASME J. Appl. Mech. 72, 691–694 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Wang X.: Eshelby’s problem of an inclusion of arbitrary shape in a decagonal quasicrystalline plane or half-plane. Int. J. Eng. Sci. 42, 1911–1930 (2004)

    Article  MATH  Google Scholar 

  26. Wang X.: Three-phase elliptical inclusions with internal uniform hydrostatic stresses in finite plane elastostatics. Acta Mech. 219, 77–90 (2011)

    Article  MATH  Google Scholar 

  27. Wheeler L.T.: Stress minimum forms for elastic solids. Appl. Mech. Rev. 45, 1–11 (1992)

    Article  Google Scholar 

  28. Zou W.N., He Q.-C., Huang M.J., Zheng Q.-S.: Eshelby’s problem of non-elliptical inclusions. J. Mech. Phys. Solids 58, 346–372 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. -L. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Gao, X.L. On the uniform stress state inside an inclusion of arbitrary shape in a three-phase composite. Z. Angew. Math. Phys. 62, 1101–1116 (2011). https://doi.org/10.1007/s00033-011-0134-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0134-3

Mathematics Subject Classification (2000)

Keywords

Navigation