Skip to main content
Log in

Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

A new mathematical model of two-temperature magneto-thermoelasticity is constructed where the fractional order heat conduction law is considered. The state space approach is adopted for the solution of one-dimensional application for a perfect conducting half-space of elastic material with heat sources distribution in the presence of a transverse magnetic field. The Laplace-transform technique is used. A numerical method is employed for the inversion of the Laplace transforms. According to the numerical results and its graphs, conclusions about the new theory are given. Some comparisons are shown in figures to estimate the effects of the temperature discrepancy and the fractional order parameter on all the studied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a :

temperature discrepancy

B i :

components of magnetic field strength

c:

the speed of light

c o :

\({\sqrt{\frac{\lambda + 2 \mu}{\rho}}}\), speed of propagation of isothermal elastic waves

C E :

specific heat at constant strain

e :

dilatation

e ij :

components of strain tensor

E i :

components of electric field vector

H(.):

Heaviside unit step function

H i :

magnetic field intensity

J i :

components electric density vector

k :

thermal conductivity

q :

heat flux vector

Q :

the intensity of applied heat source per unit volume

t :

time

T :

absolute thermodynamic temperature

T o :

\({\varphi_0}\) reference temperature

u i :

components of displacement vector

α, υ:

fractional orders

α 0 :

\({\sqrt{\mu_0 H_0^2 /\rho}}\), Alfven velocity

α T :

coefficient of linear thermal expansion

α*:

\({1+(\alpha _0 /c)^{2}}\)

β :

\({(\alpha_0 /c_0)^{2}}\)

β 0 :

dimensionless temperature discrepancy

\({\beta_0^c}\) :

the critical value of β 0

γ :

(3λ + 2μ)α T

δ(.):

Dirac delta function

δ ij :

Kronecker’s delta

\({\varepsilon_{ij}}\) :

components of strain tensor

\({\varepsilon_0}\) :

electric permittivity

\({\varepsilon}\) :

thermal coupling parameter

η0 :

\({\frac{\rho C_E}{k}}\)

θ :

\({T-\varphi_0 ;\, \left|{\frac{\theta}{\varphi_0}}\right| << 1}\)

λμ:

Lame’ constants

μ 0 :

magnetic permeability

ρ :

mass Density

σ ij :

components of stress tensor

τ 0 :

relaxation time

\({\phi}\) :

conductive absolute temperature

\({\varphi}\) :

\({\phi -\varphi _0 ;\, \left|{\frac{\varphi}{\varphi_0}}\right| << 1}\)

References

  1. Chen P.J., Gurtin M.E.: On a theory of heat conduction involving two temperatures. ZAMP 19, 614–627 (1968)

    Article  MATH  Google Scholar 

  2. Chen P.J., Gurtin M.E., Williams W.O.: A note on non-simple heat conduction. ZAMP 19, 969–970 (1968)

    Article  Google Scholar 

  3. Chen P.J., Gurtin M.E., Williams W.O.: On the thermodynamics of non-simple elastic materials with two temperatures. ZAMP 20, 107–112 (1969)

    Article  MATH  Google Scholar 

  4. Warren W.E., Chen P.J.: Wave propagation in the two-temperature theory of thermoelasticity. Acta Mech. 16, 21–33 (1973)

    Article  MATH  Google Scholar 

  5. Ieşan D.: On the linear coupled thermoelasticity with two temperatures. ZAMP 21, 583–591 (1970)

    Article  MATH  Google Scholar 

  6. Youssef H.: Theory of two-temperature generalized thermoelasticity. IMA J. Appl. Math. 71, 383–390 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Puri P., Jordan P.M.: On the propagation of harmonic plane waves under the two-temperature theory. Int. J. Eng. Sci. 44, 1113–1126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chakrabarti S.: Thermoelastic waves in non-simple media. Pure Appl. Geophys. 109, 1682–1692 (1973)

    Article  Google Scholar 

  9. Ezzat M.A., El-Bary A.A.: State space approach of two-temperature magneto-thermoelasticity theory with thermal relaxation in a medium of perfect conductivity. Int. J. Eng. Sci. 47, 618–630 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ezzat M.A.: State space approach to solids and fluids. Can. J. Phys. Rev. 86, 1241–1250 (2008)

    Article  Google Scholar 

  11. Quintanilla R.: On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures. Acta Mech. 168, 61–73 (2004)

    Article  MATH  Google Scholar 

  12. Ignaczak, J.: Generalized thermoelasticity and its applications. In: Hetnarski, R.B. (ed.) Thermal Stress, vol. III, pp. 279–354. Elsevier, New York (1989)

  13. Chandrasekharaiah D.S.: Hyperbolic thermoelasticity. A review of recent literature. Appl. Mech. Rev. 51, 705–729 (1998)

    Article  Google Scholar 

  14. Hetnarski R.B., Ignaczak J.: Generalized thermoelasticity. J. Therm. Stress. 22, 451–476 (1999)

    Article  MathSciNet  Google Scholar 

  15. Hetnarski R.B., Eslami M.R.: Thermal Stresses: Advanced Theory and Applications. Springer, Berlin (2008)

    Google Scholar 

  16. Lord H., Shulman Y.: A generalized dynamical theory of thermoelasticity. Mech. Phys. Solids 15, 299–309 (1967)

    Article  MATH  Google Scholar 

  17. Ignaczak J., Ostoja-starzeweski M.: Thermoelasticity with Finite Wave Speeds. Oxford University Press, New York (2009)

    Book  Google Scholar 

  18. Joseph D.D., Preziosi L.: Heat waves. Rev. Mod. Phys. 61, 41–73 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Joseph D.D., Preziosi L.: Addendum to the paper: heat waves. Rev. Mod. Phys. 62, 375–391 (1990)

    Article  MathSciNet  Google Scholar 

  20. Cattaneo C.: Sur une forme de l’e’quation de la Chaleur e’liminant le paradoxe d’une propagation instantane’e. C. R. Acad. Sci. 247, 431–433 (1958)

    MathSciNet  Google Scholar 

  21. Ignaczak J.: Uniqueness in generalized thermoelasticity. J. Therm. Stress. 2, 171–175 (1979)

    Article  Google Scholar 

  22. Chandrasekharaiah D.S.: A temperature-rate dependent thermo-piezoelectricity. J. Therm. Stress. 7, 293–306 (1984)

    Article  MathSciNet  Google Scholar 

  23. Sherief H.: On uniqueness and stability in generalized thermoelasticity. Quart. J. Appl. Math. 45, 773–778 (1987)

    MathSciNet  Google Scholar 

  24. Ezzat M.A., El-Karamany A.S.: The uniqueness and reciprocity theorems for generalized thermoviscoelasticity for anisotropic media. J. Therm. Stress. 25, 507–522 (2002)

    Article  MathSciNet  Google Scholar 

  25. Ezzat M.A., El-Karamany A.S.: On uniqueness and reciprocity theorems for generalized thermo-viscoelasticity with thermal relaxation. Can. J. Phys. 81, 823–833 (2003)

    Article  Google Scholar 

  26. Sherief H.: Fundamental solution of generalized thermoelastic problem for short times. J. Therm. Stress. 9, 151–164 (1986)

    Article  Google Scholar 

  27. Ezzat M.A.: Fundamental solution in generalized magneto-thermoelasticity with two relaxation times for perfect conductor cylindrical region. Int. J. Eng. Sci. 4, 1503–1519 (2004)

    Article  MathSciNet  Google Scholar 

  28. Ezzat M.A., El-Karamany A.S.: Propagation of discontinuities in magneto-thermoelastic half-space. J. Therm. Stress. 29, 331–358 (2006)

    Article  Google Scholar 

  29. El-Karamany A.S., Ezzat M.A.: Discontinuities in generalized thermo-viscoelasticity under four theories. J. Therm. Stress. 27, 1187–1212 (2004)

    Article  Google Scholar 

  30. Caputo M.: Linear models of dissipation whose Q is almost frequency independent II. Geophys. J. R. Astron. Soc. 13, 529–539 (1967)

    Google Scholar 

  31. Mainardi F.: Fractional calculus: some basic problems in continuum and statistical mechanics’. In: Carpinteri, A., Mainardi, F. (eds) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer, New York (1997)

    Google Scholar 

  32. Podlubny I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  33. Kiryakova, V.: Generalized fractional calculus and applications. In: Pitman Research Notes in Mathematics Series, vol. 301. Longman-Wiley, New York (1994)

  34. Oldham K.B., Spanier J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  35. Miller K.S., Ross B.: An Introduction to the Fractional Integrals and Derivatives-Theory and Applications. Wiley, New York (1993)

    Google Scholar 

  36. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives-Theory and Applications. Gordon and Breach, Longhorne (1993)

    MATH  Google Scholar 

  37. Gorenflo R., Mainardi F.: Fractional Calculus: Integral and Differential Equations of Fractional Orders, Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)

    Google Scholar 

  38. Hilfer R.: Applications of Fraction Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  39. Caputo M., Mainardi F.: Linear model of dissipation in anelastic solids. Rivis ta el Nuovo cimento 1, 161–198 (1971)

    Article  Google Scholar 

  40. Caputo M.: Vibrations on an infinite viscoelastic layer with a dissipative Memory. J. Acous. Soc. Am. 56, 897–904 (1974)

    Article  MATH  Google Scholar 

  41. Bagley R.L., Torvik P.J.: A theoretical basis for the application of fractional Calculus to viscoelasticity. J. Rheol. 27, 201–210 (1983)

    Article  MATH  Google Scholar 

  42. Koeller R.C.: Applications of fractional calculus to the theory of viscoelasticity. Trans. ASME-J. Appl. Mech. 51, 299–307 (1984)

    Article  MathSciNet  Google Scholar 

  43. Rossikhin Yu.A., Shitikova M.V.: Applications of fractional calculus to dynamic problems of linear and nonlinear heredity mechanics of solids. Appl. Mech. Rev. 50, 15–67 (1997)

    Article  Google Scholar 

  44. Kimmich R.: Strange kinetics, porous media, and NMR. J. Chem. Phys. 284, 243–285 (2002)

    Google Scholar 

  45. Mainardi F., Gorenflo R.: On Mittag-Lettler-type function in fractional evolution processes. J. Comput. Appl. Math. 118, 283–299 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  46. Fujita Y.: Integrodifferential equation which interpolates the heat equation and wave Equation (I). Osaka J. Math. 27, 309–321 (1990)

    MathSciNet  MATH  Google Scholar 

  47. Fujita Y.: Integrodifferential equation which interpolates the heat equation and wave equation (II). Osaka J. Math. 27, 797–804 (1990)

    MathSciNet  MATH  Google Scholar 

  48. Povstenko Y.Z.: Fractional heat conduction equation and associated thermal stress. J. Therm. Stress. 28, 83–102 (2005)

    Article  MathSciNet  Google Scholar 

  49. Sherief H.H., El-Said A., Abd El-Latief A.: Fractional order theory of thermoelasticity. Int. J. Solid Struct. 47, 269–275 (2010)

    Article  MATH  Google Scholar 

  50. Lebon G., Jou D., Casas-Vázquez J.: Understanding Non-equilibrium Thermodynamics: Foundations, Applications Frontiers. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  51. Jou D., Casas-Vázquez J., Lebon G.: Extended irreversible thermodynamics. Rep. Progress Phys. 51, 1105–1179 (1988)

    Article  Google Scholar 

  52. Youssef H.: Theory of fractional order generalized thermoelasticity. J. Heat Transf. 132, 1–7 (2010)

    Article  MathSciNet  Google Scholar 

  53. Ezzat M.A.: Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys. B 405, 4188–4194 (2010)

    Article  Google Scholar 

  54. Ezzat M.A.: Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys. B 406, 30–35 (2011)

    Article  Google Scholar 

  55. Jumarie G.: Derivation and solutions of some fractional Black_Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio. Comput. Math. Appl. 59, 1142–1164 (2010)

    MathSciNet  MATH  Google Scholar 

  56. El-Karamany A.S., Ezzat M.A.: Convolutional variational principle, reciprocal and uniqueness theorems in linear fractional two-temperature thermoelasticity. J. Therm. Stress. 34(3), 264–284 (2011)

    Article  Google Scholar 

  57. El-Karamany, A.S., Ezzat, M.A.: On the Fractional Thermoelasticity. Mathematics and Mechanics of Solid. Published online 8 March 2011, doi:10.1177/1081286510397228

  58. Ezzat M.A., El-Karamany A.S.: Fractional order theory of a perfect conducting thermoelastic medium. Can. J. Phys. 89(3), 311–318 (2011)

    Article  Google Scholar 

  59. Honig G., Hirdes U.: A method for the numerical inversion of the Laplace transform. J. Comp. Appl. Math. 10, 113–132 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  60. Biot M.: Thermoelasticity and irreversible thermodynamics. J. Appl. Phys. 27, 240–253 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  61. Ezzat M.A., El-Karamany A.S.: State space approach of two-temperature magneto-viscoelasticity with thermal relaxation in a medium of perfect conductivity. J. Therm. Stress. 32, 819–838 (2009)

    Article  Google Scholar 

  62. Ezzat M.A., Farid H., Emad A.: Electro-magneto-thermoelastic plane waves in micropolar solid involving two temperatures. Acta Mech. Solida Sin. 23, 200–212 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy A. Ezzat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ezzat, M.A., El Karamany, A.S. Fractional order heat conduction law in magneto-thermoelasticity involving two temperatures. Z. Angew. Math. Phys. 62, 937–952 (2011). https://doi.org/10.1007/s00033-011-0126-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00033-011-0126-3

Mathematics Subject Classification (2000)

Keywords

Navigation