Skip to main content
Log in

Steklov-Neumann Eigenproblens: A Spectral Characterization of the Sobolev Trace Spaces

  • Published:
Milan Journal of Mathematics Aims and scope Submit manuscript

Abstract

We will study two classes of the eigenvalues problems for elliptic systems: one of them for the Steklov and another one for Neumann. In both problems we guarantee the existence of an increasing unbounded sequence of eigenvalues. The results were basically justified through of the variational arguments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Afrouzi, S. Heidarkhani, D. O’Regan, Three solutions to a class of Neumann doubly eigenvalue elliptic systems driven by a (p 1, p 2, . . . , p n )-Laplacian, Bull. Korean Math. Soc. 6 (2010), 1235-1250.

  2. H. Amann, Maximum principles and principal eigenvalues, Ten Mathematical Essays on Approximation in Analysis and Topology, J. Ferrera, J. López-Gomez, F. R. Ruiz del Portal (editors) Elsevier (2005) 1-60.

  3. Auchmuty G.: Bases and comparison results for linear elliptic eigenproblems. Journal Math. Anal. Appl. 390, 394–406 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Lê A.: Eigenvalue problems for the p-Laplacian. Nonlinear Analysis 64, 1057–1099 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. G. Auchmuty, Finite energy solutions of mixed elliptic boundary value problems, Math. Methods for the Applied Sciences 33 (2010), 1446-1462.

  6. G. Auchmuty, Steklov eigenproblems and the representation of solutions of elliptic boundary value problems, Numerical Functional Analysis and Optimization 25 (2004), 321-348.

  7. G. Auchmuty, Spectral characterization of the trace spaces \({H^{s}(\partial\Omega)}\), SIAM J. Math. Analysis 38 (3) (2006), 894-905.

  8. H. Brezis, Functional Analysis, Sobolev spaces and partial differential equations, Springer, New York, 2011.

  9. Brock F.: An isoperimetric inequality for eigenvalues of the Stekloff problem. ZAMM Z. Angew. Math. Mech. 81, 69–71 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. J.F. Escobar, An isoperimetric inequality and the first Steklov eigenvalue, Journal of Functional Analysis 165 (1999), 101-116.

  11. Escobar J.F.: A comparison theorem for the first non-zero Steklov eingenvalue. Journal of Functional Analysis 178, 143–155 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  12. L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, 1992.

  13. Grisvard P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)

    MATH  Google Scholar 

  14. Lamberti P.D.: Steklov-type eigenvalues associated with best Sobolev trace constants: domain perturbation and overdetermined systems. Complex Variables and Elliptic Equations 59, 309–323 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  15. C. Li, The existence of infinitely many solutions of a class of nonlinear elliptic equations with Neumann boundary condition for both resonance and oscillation problems, Nonlinear Analysis 54 (2003), 441-443.

  16. Li C., Li S.: Multiple solutions and sign-changing solutions of a class of nonlinear elliptic equations with Neumann boundary condition. J. Math. Anal. Appl. 298, 14–32 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  17. P. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, CBMS Regional Conf. Ser. in Math. 65. American Mathematical Society, Providence, RI, 1986.

  18. Troutman J.L.: Variational Calculus and Optimal Control. Springer, New York (1995)

    Google Scholar 

  19. M. Willem, Minimax Theorems, Progress in Nonlinear Differential Equations and their Applications, Birkhauser, 24, Boston, MA, 1996.

  20. J. Zhang, S. Li, Y. Wang, X. Xue, Multiple solutions for semilinear elliptic equations with Neumann boundary condition and jumping nonlinearities, J. Math. Anal. Appl. 371 (2010), 682-690.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.D.B. de Godoi.

Additional information

Research supported in part by INCTmat/MCT-Brazil.J.D.B.de Godoi was supported in part by CAPES/Brazil and O.H. Miyagaki has been supported in part by CNPq/Brazil and Fapemig CEX APQ 00025/11, and he is corresponding author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Godoi, J., Miyagaki, O. & Rodrigues, R. Steklov-Neumann Eigenproblens: A Spectral Characterization of the Sobolev Trace Spaces. Milan J. Math. 83, 177–198 (2015). https://doi.org/10.1007/s00032-015-0234-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00032-015-0234-1

Mathematics Subject Classification

Keywords