Skip to main content
Log in

HOMOGENEOUS COMPACT GEOMETRIES

  • Published:
Transformation Groups Aims and scope Submit manuscript

A Correction to this article was published on 17 April 2019

This article has been updated

Abstract

We classify compact homogeneous geometries of irreducible spherical type and rank at least 2 which admit a transitive action of a compact connected group, up to equivariant 2-coverings. We apply our classification to polar actions on compact symmetric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 17 April 2019

    We correct an error in our article [6], completing the classification of compact homogeneous geometries.

  • 17 April 2019

    We correct an error in our article [6], completing the classification of compact homogeneous geometries.

References

  1. M. Aschbacher, Finite geometries of type C 3 with flag-transitive groups, Geom. Dedicata 16 (1984), no. 2, 195–200.

    Article  MATH  MathSciNet  Google Scholar 

  2. A. Berenstein, M. Kapovich, Affine buildings for dihedral groups, Geom. Dedicata 156 (2012), 171–207.

    Article  MATH  MathSciNet  Google Scholar 

  3. A. Borel, J. Tits, Homomorphismes “abstraits” de groupes algébriques simples, Ann. of Math. (2) 97 (1973), 499–571.

    Article  MATH  MathSciNet  Google Scholar 

  4. G. E. Bredon, Introduction to Compact Transformation Groups, Academic Press, New York, 1972. Russian transl.: Г. Брeдон, Введение в теорю ком-пактных групп преобразований, Наука, M., 1980.

  5. M. R. Bridson, A. Haefliger, Metric Spaces of Non-positive Curvature, Grundlehren der Mathematischen Wissenschaften, Bd. 319, Springer, Berlin, 1999.

  6. R. F. Brown, The Lefschetz Fixed Point Theorem, Scott, Foresman and Co., Glenview, IL, 1971.

    MATH  Google Scholar 

  7. F. Buekenhout, Foundations of incidence geometry, in: Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 63–105.

  8. F. Buekenhout, A. Pasini, Finite diagram geometries extending buildings, in: Handbook of Incidence Geometry, North-Holland, Amsterdam, 1995, pp. 1143–1254.

  9. K. Burns, R. Spatzier, On topological Tits buildings and their classification, Inst. Hautes Études Sci. Publ. Math. 65 (1987), 5–34.

    Article  MATH  MathSciNet  Google Scholar 

  10. É. Cartan, Sur des familles remarquables d’hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335–367.

    Article  MathSciNet  Google Scholar 

  11. S. Console, C. Olmos, Clifford systems, algebraically constant second fundamental form and isoparametric hypersurfaces, Manuscr. Math. 97 (1998), no. 3, 335–342.

    Article  MATH  MathSciNet  Google Scholar 

  12. J. Dadok, Polar coordinates induced by actions of compact Lie groups, Trans. Amer. Math. Soc. 288 (1985), no. 1, 125–137.

    Article  MATH  MathSciNet  Google Scholar 

  13. M. Dominguez-Vazquez, Isoparametric foliations on complex projective spaces, arXiv:1204.3428v1 [math.DG] (2012).

  14. P. B. Eberlein, Geometry of Nonpositively Curved Manifolds, University of Chicago Press, Chicago, 1996.

    MATH  Google Scholar 

  15. J.-H. Eschenburg, E. Heintze, Polar representations and symmetric spaces, J. Reine Angew. Math. 507 (1999), 93–106.

    MATH  MathSciNet  Google Scholar 

  16. J.-H. Eschenburg, E. Heintze, On the classification of polar representations, Math. Z. 232 (1999), no. 3, 391–398.

    Article  MATH  MathSciNet  Google Scholar 

  17. F. Fang, K. Grove, G. Thorbergsson, Tits geometry and positive curvature, preprint (2012).

  18. H. Freudenthal, Die Topologie der Lieschen Gruppen als algebraisches Phänomen. I, Ann. of Math. (2) 42 (1941), 1051–1074.

    Article  MATH  MathSciNet  Google Scholar 

  19. H. Freudenthal, Oktaven, Ausnahmegruppen und Oktavengeometrie, Geom. Dedicata 19 (1985), no. 1, 7–63.

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Grundhöfer, N. Knarr, L. Kramer, Flag-homogeneous compact connected polygons, Geom. Dedicata 55 (1995), no. 1, 95–114.

    Article  MATH  MathSciNet  Google Scholar 

  21. T. Grundhöfer, N. Knarr, L. Kramer, Flag-homogeneous compact connected polygons II, Geom. Dedicata 83 (2000), no. 1–3, 1–29.

    Article  MATH  MathSciNet  Google Scholar 

  22. T. Grundhöfer, L. Kramer, H. Van Maldeghem, R. M. Weiss, Compact totally disconnected Moufang buildings, Tohoku Math. J. (2) 64 (2012), no. 3, 333–360.

  23. S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, corrected reprint of the 1978 original, Graduate Studies in Mathematics, Vol. 34, Amer. Math. Soc., Providence, RI, 2001.

  24. J. Hilgert, K.-H. Neeb, Structure and Geometry of Lie Groups, Springer Monographs in Mathematics, Springer, New York, 2012.

    Book  MATH  Google Scholar 

  25. K. H. Hofmann, S. A. Morris, The Structure of Compact Groups, de Gruyter Studies in Mathematics, Vol. 25, de Gruyter, Berlin, 1998.

  26. W. Hsiang, H. B. Lawson, Jr., Minimal submanifolds of low cohomogeneity, J. Differential Geometry 5 (1971), 1–38.

    MATH  MathSciNet  Google Scholar 

  27. J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, Vol. 29, Cambridge Univ. Press, Cambridge, 1990.

  28. H. Karcher, A geometric classification of positively curved symmetric spaces and the isoparametric construction of the Cayley plane, Astérisque 163164 (1988), 6, 111–135, 282 (1989).

  29. N. Knarr, The nonexistence of certain topological polygons, Forum Math. 2 (1990), no. 6, 603–612.

    MATH  MathSciNet  Google Scholar 

  30. N. Knarr, L. Kramer, Projective planes and isoparametric hypersurfaces, Geom. Dedicata 58 (1995), no. 2, 193–202.

    Article  MATH  MathSciNet  Google Scholar 

  31. A. Kolmogoroff, Zur Begründung der projektiven Geometrie, Ann. of Math. (2) 33 (1932), no. 1, 175–176.

  32. A. Kollross, Polar actions on symmetric spaces, J. Differential Geom. 77 (2007), no. 3, 425–482.

    MATH  MathSciNet  Google Scholar 

  33. A. Kollross, A. Lytchak, Polar actions on symmetric spaces of higher rank, Bull. Lond. Math. Soc. 45 (2013), no. 2, 341–350.

    Article  MATH  MathSciNet  Google Scholar 

  34. L. Kramer, Compact Polygons, Dissertation, Math. Fak. Univ. Tübingen, 1994, arXiv:math/0104064.

  35. L. Kramer, Holomorphic polygons, Math. Z. 223 (1996), no. 2, 333–341.

    Article  MATH  MathSciNet  Google Scholar 

  36. L. Kramer, Homogeneous Spaces, Tits Buildings, and Isoparametric Hypersurfaces, Mem. Amer. Math. Soc. 158 (2002), no. 752.

  37. L. Kramer, Loop groups and twin buildings, Geom. Dedicata 92 (2002), 145–178.

    Article  MATH  MathSciNet  Google Scholar 

  38. L. Kramer, Two-transitive Lie groups, J. Reine Angew. Math. 563 (2003), 83–113.

    MATH  MathSciNet  Google Scholar 

  39. L. Kramer, The topology of a semisimple Lie group is essentially unique, Adv. Math. 228 (2011), no. 5, 2623–2633.

    Article  MATH  MathSciNet  Google Scholar 

  40. A. Lytchak, Polar foliations on symmetric spaces, to appear in Geom. Functional Analysis, arXiv:1204.2923v2 [math.DG] (2011).

  41. W. S. Massey, A Basic Course in Algebraic Topology, Graduate Texts in Mathematics, Vol. 127, Springer, New York, 1991.

  42. J. W. Milnor, Topology from the Differentiable Viewpoint, Based on notes by David W. Weaver, The University Press of Virginia, Charlottesville, VA, 1965.

  43. S. A. Mitchell, Quillen’s theorem on buildings and the loops on a symmetric space, Enseign. Math. (2) 34 (1988), no. 1–2, 123–166.

  44. A. Neumaier, Some sporadic geometries related to PG(3, 2), Arch. Math. (Basel) 42 (1984), no. 1, 89–96.

    Article  MATH  MathSciNet  Google Scholar 

  45. A. L. Onishchik, Topology of Transitive Transformation Groups, Johann Ambrosius Barth, Leipzig, 1994.

    MATH  Google Scholar 

  46. A. Pasini, Diagram Geometries, Oxford Science Publications, Oxford Univ. Press, New York, 1994.

    MATH  Google Scholar 

  47. F. Podestà, G. Thorbergsson, Polar actions on rank-one symmetric spaces, J. Diff. Geom. 53 (1999), no. 1, 131–175.

    MATH  Google Scholar 

  48. H. Salzmann, Homogene kompakte projektive Ebenen, Pacific J. Math. 60 (1975), no. 2, 217–234.

    Article  MATH  MathSciNet  Google Scholar 

  49. H. Salzmann, D. Betten, T. Grundhöfer, H Hähl, R. Löwen, M. Stroppel, Compact Projective Planes, de Gruyter Expositions in Mathematics, Vol. 21, de Gruyter, Berlin, 1995.

  50. E. Straume, Compact connected Lie transformation groups on spheres with low cohomogeneity. I, Mem. Amer. Math. Soc. 119 (1996), no. 569.

  51. G. Thorbergsson, Isoparametric foliations and their buildings, Ann. of Math. (2) 133 (1991), no. 2, 429–446.

  52. J. Tits, Buildings of Spherical Type and Finite BN-Pairs, Lecture Notes in Mathematics, Vol. 386, Springer, Berlin, 1974.

  53. J. Tits, A local approach to buildings, in: The Geometric Vein, Springer, New York, 1981, pp. 519–547.

  54. J. Tits, Ensembles ordonnés, immeubles et sommes amalgamées, Bull. Soc. Math. Belg. Sér. A 38 (1986), 367–387 (1987).

    MathSciNet  Google Scholar 

  55. J. Tits, R. M. Weiss, Moufang Polygons, Springer Monographs in Mathematics, Springer, Berlin, 2002.

    Book  MATH  Google Scholar 

  56. G. Warner, Harmonic Analysis on Semi-simple Lie Groups. I, Springer, New York, 1972.

    Book  MATH  Google Scholar 

  57. R. M. Weiss, The structure of Spherical Buildings, Princeton Univ. Press, Princeton, NJ, 2003.

    Google Scholar 

  58. G. W. Whitehead, Elements of Homotopy Theory, Graduate Texts in Mathematics, Vol. 61, Springer, New York, 1978.

  59. B. Wilking, A duality theorem for Riemannian foliations in nonnegative sectional curvature, Geom. Funct. Anal. 17 (2007), no. 4, 1297–1320.

    Article  MATH  MathSciNet  Google Scholar 

  60. S. Yoshiara, The flag-transitive C 3 -geometries of finite order, J. Algebraic Combin. 5 (1996), no. 3, 251–284.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. KRAMER.

Additional information

*Supported by the SFB 878 ‘Groups, Geometry and Actions’.

**Supported by a Heisenberg Fellowship.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

KRAMER, L., LYTCHAK, A. HOMOGENEOUS COMPACT GEOMETRIES. Transformation Groups 19, 793–852 (2014). https://doi.org/10.1007/s00031-014-9278-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00031-014-9278-5

Keywords

Navigation