Skip to main content
Log in

Spectral pairs, Alexander modules, and boundary manifolds

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let \(n>0\) and \(f: {\mathbb {C}}^{n+1}\rightarrow {\mathbb {C}}\) be a reduced polynomial map, with \(D=f^{-1}(0)\), \({\mathcal {U}}={\mathbb {C}}^{n+1}{\setminus } D\) and boundary manifold \(M=\partial {\mathcal {U}}\). Assume that f is transversal at infinity and D has only isolated singularities. Then the only interesting non-trivial Alexander modules of \({\mathcal {U}}\) and resp. M appear in the middle degree n. We revisit the mixed Hodge structures on these Alexander modules and study their associated spectral pairs (or equivariant mixed Hodge numbers). We obtain upper bounds for the spectral pairs of the n-th Alexander module of \({\mathcal {U}}\), which can be viewed as a Hodge-theoretic refinement of Libgober’s divisibility result for the corresponding Alexander polynomials. For the boundary manifold M, we show that the spectral pairs associated to the non-unipotent part of the n-th Alexander module of M can be computed in terms of local contributions (coming from the singularities of D) and contributions from “infinity”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdallah, N.: On Hodge theory of singular plane curves. Can. Math. Bull. 59(3), 449–460 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of Differentiable Maps. Volume II. Monographs in Mathematics, vol. 83. Birkhauser Boston, Inc., Boston (1988)

    Book  Google Scholar 

  3. Brylinski, J.-L.: Transformations canoniques, dualité projective, théorie de Lefschetz, transformations de Fourier et sommes trigonométriques. Astérisque 140–141, 3-134, 251 (1986)

    MATH  Google Scholar 

  4. Budur, N.: Bernstein–Saito ideals and local systems. Ann. Inst. Fourier 65(2), 549–603 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Budur, N., Saito, M.: Jumping coefficients and spectrum of a hyperplane arrangement. Math. Ann. 347, 545–579 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Budur, N., Wang, B.: Local systems on analytic germ complements. Adv. Math. 306, 905–928 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cogolludo, J.I., Florens, V.: Twisted Alexander polynomials of plane algebraic curves. J. Lond. Math. Soc. 76(1), 105–121 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cappell, S.E., Shaneson, J.L.: Singular spaces, characteristic classes, and intersection homology. Ann. of Math. (2) 134(2), 325–374 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cohen, D., Suciu, A.: Boundary manifolds of projective hypersurfaces. Adv. Math. 206(2), 538–566 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Davis, M.W., Januszkiewicz, T., Leary, I.J.: The \(l^{2}\)-cohomology of hyperplane complements. Groups Geom. Dyn. 1(3), 301–309 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Deligne, P.: Theorie de Hodge, III. Publ. Math. IHES 44, 5–77 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dimca, A.: Singularities and Topology of Hypersurfaces. Universitext. Springer, New York (1992)

    Book  MATH  Google Scholar 

  13. Dimca, A.: Hodge numbers of hypersurfaces. Abh. Math. Sem. Univ. Hambg. 66, 377–386 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dimca, A.: Monodromy and Hodge theory of regular functions, New developments in singularity theory (Cambridge, 2000). NATO Science Series II: Mathematics, Physics and Chemistry, vol. 21, pp. 257–278. Kluwer Acad. Publ., Dordrecht (2001)

  15. Dimca, A.: Hyperplane arrangements, M-tame polynomials and twisted cohomology, Commutative Algebra, Singularities and Computer Algebra (Sinaia, 2002). NATO Science Series II: Mathematics, Physics and Chemistry, vol. 115, pp. 113–126. Kluwer Acad. Publ., Dordrecht (2003)

  16. Dimca, A.: Sheaves in Topology. Universitext. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  17. Dimca, A., Libgober, A.: Regular functions transversal at infinity. Tohoku Math. J. 58(4), 549–564 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dimca, A., Némethi, A.: Hypersurface complements, Alexander modules and monodromy. Real and complex singularities, pp. 19–43. Contemporary Mathematics, vol. 354. Amer. Math. Soc., Providence (2004)

  19. Dimca, A., Papadima, S.: Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments. Ann. Math. (2) 158(2), 473–507 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fujiki, A.: Duality of mixed Hodge structures of algebraic varieties. Publ. Res. Inst. Math. Sci. (2) 16(3), 635–667 (1980)

    Article  MATH  Google Scholar 

  21. Libgober, A.: Alexander polynomial of plane algebraic curves and cyclic multiple planes. Duke Math. J. 49(4), 833–851 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  22. Libgober, A.: Alexander invariants of plane algebraic curves. Singularities, Part 2 (Arcata, Calif., 1981), pp. 135–143. Proceedings of Symposia in Pure Mathematics, vol. 40. Amer. Math. Soc., Providence (1983)

  23. Libgober, A.: Homotopy groups of the complements to singular hypersurfaces, II. Ann. Math. (2) 139(1), 117–144 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Libgober, A.: Position of singularities of hypersurfaces and the topology of their complements. J. Math. Sci. 82(1), 3194–3210 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Libgober, A.: Non vanishing loci of Hodge numbers of local systems. Manuscr. Math. 128(1), 1–31 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  26. Liu, Y.: Nearby cycles and Alexander modules of Hypersurface complements. Adv. Math. 291, 330–361 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, Y., Maxim, L.: Reidemeister torsion, peripheral complex, and Alexander polynomials of hypersurface complements. Algebr. Geom. Topol. 15(5), 2757–2787 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, Y., Maxim, L.: Characteristic varieties of hypersurface complements. Adv. Math. 306, 451–493 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Massey, D.: Perversity, duality and arrangements in \({\cal{C}}^{3}\). Topol. Appl. 73, 169–179 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  30. Maxim, L.: Intersection homology and Alexander modules of hypersurface complements. Comment. Math. Helv. 81(1), 123–155 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Milnor, J.: Infinite cyclic coverings. Conference on the Topology of Manifolds, pp. 115–133. Prindle, Weber & Schmidt, Boston (1968)

  32. Neeman, A.: Triangulated Categories. Annals of Mathematics Studies, vol. 148. Princeton University Press, Princeton (2001)

    Google Scholar 

  33. Oka, M.: A survey on Alexander polynomials of plane curves. Séminaires Congès 10, 209–232 (2005)

    MathSciNet  MATH  Google Scholar 

  34. Saito, M.: Modules de Hodge polarisables. Publ. Res. Inst. Math. Sci. 24(6), 849–995 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Saito, M.: Mixed Hodge modules. Publ. Res. Inst. Math. Sci. 26(2), 221–333 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saito, M.: Extension of mixed Hodge modules. Compos. Math. 74(2), 209–234 (1990)

    MathSciNet  MATH  Google Scholar 

  37. Scherk, J., Steenbrink, J.: On the mixed Hodge structure on the cohomology of the Milnor fibre. Math. Ann. 271, 641–665 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  38. Steenbrink, J.: Intersection form for quasi-homogeneous singularities. Compos. Math. 34(2), 211–223 (1977)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurenţiu Maxim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Maxim, L. Spectral pairs, Alexander modules, and boundary manifolds. Sel. Math. New Ser. 23, 2261–2290 (2017). https://doi.org/10.1007/s00029-017-0333-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-017-0333-7

Keywords

Mathematics Subject Classification

Navigation