Skip to main content
Log in

The Hall algebra of a curve

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Let X be a smooth projective curve over a finite field. We describe H, the full Hall algebra of vector bundles on X, as a Feigin–Odesskii shuffle algebra. This shuffle algebra corresponds to the scheme S of all cusp eigenforms and to the rational function of two variables on S coming from the Rankin–Selberg L-functions. This means that the zeroes of these L-functions control all the relations in H. The scheme S is a disjoint union of countably many \({\mathbb G}_m\)-orbits. In the case when X has a theta-characteristic defined over the base field, we embed H into the space of regular functions on the symmetric powers of S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, J.-N.: (redigé par P. Deligne) Le “centre” de Bernstein, In: “Representations des groups redutifs sur un corps local, Travaux en cours” (P. Deligne ed.), pp. 1–32, Hermann, Paris (1984)

  2. Braverman, A., Kazhdan, D.: On the Schwartz space of the basic affine space. Selecta Math. (N.S.) 5, 11–28 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  3. Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, preprint. arXiv: math.AG/0505148

  4. Chari, V., Pressley, A.: A Guide to Quantum Groups. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  5. Deligne, P.: Constantes des équations fonctionelles des fonctions L. In: Lecture Notes in Mathematics 349, pp. 501–597, Springer (1973)

  6. Feigin, B.L., Odesskii, A.V.: Vector bundles on elliptic curves and Sklyanin algebras. In: “Topics in quantum groups and finite-type invariants”, pp. 65–84, Am. Math. Soc. Trans. Ser. 2, 185, Am. Math. Soc., Providence, RI (1998)

  7. Fratila, D.: Cusp eigenforms and the Hall algebra of an elliptic curve, preprint. arXiv: 1109.4308

  8. Green, J.A.: Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120, 361–377 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Grothendieck, A., Dieudonné, J.: Étude globale éleméntaire de quelques classes de morphismes (EGA2). Publ. Math. IHES 8, 5–222 (1961)

    Article  Google Scholar 

  10. Grothendieck, A.: Cohomologie l-adique et fonctions L. Séminaire de Géometrie Algébrique du Bois-Marie 1965–1966 (SGA 5). Ed. by Luc Illusie. Lecture Notes in Mathematics, Vol. 589. Springer, Berlin (1977)

  11. Jacquet, H., Piatetskii-Shapiro, I., Shalika, J.: Rankin–Selberg convolutions. Am. J. Math. 105, 367–464 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  12. Jacquet, H., Shalika, J.: On Euler products and classification of automorphic forms II. Am. J. Math. 103, 777–815 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  13. Joyal, A., Street, R.: The category of representations of the general linear groups over a finite field. J. Algebra 176, 908–946 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kapranov, M.: Eisenstein series and quantum affine algebras. J. Math. Sci. (N. Y.) 84, 1311–1360 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lafforgue, L.: Chtoucas de Drinfeld et correspondance de Langlands. Invent. Math. 147, 1–241 (2002)

    Article  MathSciNet  Google Scholar 

  16. Macdonald, I.: Symmetric Functions and Hall Polynomials. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  17. Macdonald, I.: Symmetric Functions and Orthogonal Polynomials. American Math. Soc, Providence (1998)

    MATH  Google Scholar 

  18. Majid, S.: Algebras and Hopf algebras in braided categories. Advances in Hopf algebras (Chicago, IL, 1992), pp. 55–105, Lecture Notes in Pure and Appl. Math. 158, Dekker, New York, (1994)

  19. Majid, S.: Foundations of Quantum Group Theory. Cambridge Univ. Press, Cambridge (2000)

    MATH  Google Scholar 

  20. Milne, J.S.: Étale Cohomology. Princeton University Press, Princeton (1980)

    MATH  Google Scholar 

  21. Moeglin, C., Waldspurger, J.-L.: Spectral Decomposition and Eisenstein Series. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  22. Mumford, D.: Lectures on Curves on an Algebraic Surface, with a section by G. M. Bergman. Princeton University Press, Princeton (1966)

    Book  MATH  Google Scholar 

  23. Piatetskii-Shapiro, I.I.: Zeta Functions of \(GL(n)\), preprint, University of Maryland, (1976)

  24. Rosso, M.: Quantum groups and quantum shuffles. Invent. Math. 133, 399–416 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schiffmann, O.: On the Hall algebra of an elliptic curve II, preprint. arXiv:math/0508553

  26. Schiffmann, O.: Lectures on Hall algebras, preprint. arXiv:math/0611617

  27. Schiffmann, O.: Drinfeld realization of the elliptic Hall algebra, preprint. arXiv:1004.2575

  28. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra, Cherednick Hecke algebras and Macdonald polynomials. Compos. Math. 147, 188–234 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schiffmann, O., Vasserot, E.: The elliptic Hall algebra and the equivariant K-theory of the Hilbert scheme of \({\mathbb{A}}^2\), preprint. arXiv:0905.2555

  30. Schiffmann, O., Vasserot, E.: Hall algebras of curves, commuting varieties and Langlands duality, preprint. arXiv:1009.0678

  31. Shalika, J.A.: The multiplicity one theorem for \(GL_n\). Ann. Math. 100, 171–193 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  32. Soibelman, Y.: Meromorphic tensor categories, quantum affine and chiral algebras. I. In: “Recent developments in quantum affine algebras and related topics” (Raleigh, NC, 1998), pp. 437–451, Contemp. Math., 248, Amer. Math. Soc., Providence (1999)

  33. Takeuchi, M.: Survey of braided Hopf algebras. New trends in Hopf algebra theory (La Falda, 1999), pp. 301–323, Contemp. Math., 267, Amer. Math. Soc., Providence (2000)

  34. Toën, B.: Derived Hall algebras. Duke Math. J. 135, 587–615 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Kapranov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapranov, M., Schiffmann, O. & Vasserot, E. The Hall algebra of a curve. Sel. Math. New Ser. 23, 117–177 (2017). https://doi.org/10.1007/s00029-016-0239-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00029-016-0239-9

Keywords

Mathematics Subject Classification

Navigation