Skip to main content
Log in

Absence of embedded eigenvalues for non-local Schrödinger operators

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider non-local Schrödinger operators with kinetic terms given by several different types of functions of the Laplacian and potentials decaying to zero at infinity and derive conditions ruling embedded eigenvalues out. Our goal in this paper is to advance techniques based on virial theorems, Mourre estimates, and an extended version of the Birman–Schwinger principle, previously developed for classical Schrödinger operators but thus far not used for non-local operators. We also present a number of specific cases by choosing particular classes of kinetic and potential terms and discuss existence/non-existence of at-edge eigenvalues in a basic model case in function of the coupling parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Not applicable.

References

  1. F.J. Almgren, E.H. Lieb: Symmetric decreasing rearrangement is sometimes continuous, J. Amer. Math. Soc. 2 (1989), 683-773

    Article  MathSciNet  MATH  Google Scholar 

  2. W.O. Amrein, A. Boutet de Monvel, V. Georgescu: \(C_0\)-groups, Commutator Methods and Spectral Theory of \(N\)-Body Hamiltonians, Progress in Mathematics 135, Birkhäuser, (1996)

  3. A. Arai: Necessary and sufficient conditions for a Hamiltonian with discrete eigenvalues to have time operators, Lett. Math. Phys. 87 (2009), 67-80

    Article  MathSciNet  MATH  Google Scholar 

  4. A. Arai, F. Hiroshima: Ultra-weak time operators of Schrödinger operators, Ann. Henri Poincaré 18 (2017), 2995-3033

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Ascione and J. Lőrinczi: Potentials for non-local Schrödinger operators with zero eigenvalues, J. Diff. Equations 317, 264-364, 2022

    Article  MATH  Google Scholar 

  6. A. Biswas, J. Lőrinczi: Universal constraints on the location of extrema of eigenfunctions of non-local Schrödinger operators, J. Diff. Equations 267 (2019), 267-306

    Article  MATH  Google Scholar 

  7. A. Biswas, J. Lőrinczi: Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for non-local Schrödinger equations with exterior conditions, SIAM J. Math. Anal. 51 (2019), 1543–1581

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Capasso et al: Observation of an electronic bound state above a potential well, Nature 358 (1992), 565-567

    Article  Google Scholar 

  9. R. Carmona, W.C. Masters, B. Simon: Relativistic Schrödinger operators: asymptotic behaviour of the eigenfunctions, J. Funct. Anal. 91 (1990), 117-142

    Article  MathSciNet  MATH  Google Scholar 

  10. J.-C. Cuenin: Embedded eigenvalues of generalized Schrödinger operators, J. Spectr. Theory 10 (2020), 415-437

    Article  MathSciNet  MATH  Google Scholar 

  11. C.-S. Deng, W. Liu, E. Nane: Finite time blowup of solutions to SPDEs with Bernstein functions of the Laplacian, Potential Anal. (2022), https://doi.org/10.1007/s11118-021-09978-1

  12. M.S.P. Eastham, H. Kalf: Schrödinger-Type Operators with Continuous Spectra, Pitman, (1982)

  13. M.M. Fall, V. Felli: Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Comm. Part. Diff. Eqs. 39 (2014), 354-397

    Article  MathSciNet  MATH  Google Scholar 

  14. L.I. Hedberg: On certain convolution inequalities, Proc. Amer. Math. Soc. 36 (1972), 505–510

    Article  MathSciNet  MATH  Google Scholar 

  15. I.W. Herbst: Spectral theory of the operator \((p^2+m^2)^{1/2} - Ze^2/r\), Commun. Math. Phys. 53 (1977), 285–294

    Article  MATH  Google Scholar 

  16. F. Hiroshima, T. Ichinose, J. Lőrinczi: Path integral representation for Schrödinger operators with Bernstein functions of the Laplacian, Rev. Math. Phys. 24 (2012), 1250013

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Hiroshima, J. Lőrinczi: Lieb-Thirring bound for Schrödinger operators with Bernstein functions of the Laplacian, Commun. Stoch. Anal. 6 (2012), 589-602

    MathSciNet  MATH  Google Scholar 

  18. A. Ishida: Minimal velocity bound for relativistic operator with fractional powers, arXiv:2007.05388

  19. A. Ishida, K. Wada: Threshold between short and long-range potentials for non-local Schrödinger operators, J. Math. Phys. Anal. Geom. 23, 32 (2020). https://doi.org/10.1007/s11040-020-09356-0

  20. C. Jäh, J. Lőrinczi: Eigenvalues at the continuum edge for fractional Schrödinger operators, preprint, (2021)

  21. K. Kaleta, J. Lőrinczi: Fall-off of eigenfunctions for non-local Schrödinger operators with decaying potentials, Potential Anal. 46 (2017), 647-688

    Article  MathSciNet  MATH  Google Scholar 

  22. K. Kaleta, J. Lőrinczi: Zero-energy bound state decay for non-local Schrödinger operators, Commun. Math. Phys. 374 (2020), 2151-2191

    Article  MATH  Google Scholar 

  23. T. Kato: Growth properties of solutions of the reduced wave equation with a variable coefficient, Commun. Pure Appl. Math. 12 (1959), 403-425

    Article  MathSciNet  MATH  Google Scholar 

  24. S. T. Kuroda: Spectral Theory II, Iwanami Shoten, (1979) (in Japanese)

  25. M. Kwaśnicki, J. Mucha: Extension technique for complete Bernstein functions of the Laplace operator, J. Evol. Equ. 18 1341–1379 ,(2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. E.H. Lieb, R. Seiringer: The Stability of Matter in Quantum Mechanics, Cambridge University Press, (2010)

  27. J. Lőrinczi, F. Hiroshima, V. Betz: Feynman–Kac-Type Theorems and Gibbs Measures on Path Space, Walter de Gruyter, (2020), second edition

  28. J. Lőrinczi, I. Sasaki: Embedded eigenvalues and Neumann-Wigner potentials for relativistic Schrödinger operators, J. Funct. Anal. 273 (2017), 1548-1575

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Maceda: On the Birman-Schwinger principle applied to \(\sqrt{-\Delta + m^2} - m\), J. Math. Phys. 47 (2006), 033506

    Article  MathSciNet  MATH  Google Scholar 

  30. S. Molchanov, B. Vainberg: On general Cwikel-Lieb-Rozenblum and Lieb-Thirring inequalities, in Around the Research of Vladimir Maz’ya, International Mathematical Series, vol. 13 (A. Laptev, ed.), Springer, (2010)

  31. E. Mourre: Absence of singular continuous spectrum for certain self-adjoint operators Comm. Math. Phys. 78 , 391-408 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  32. S. Nakamura: Spectral Theory for Quantum Mechanics, Kyoritsu Shuppan, (2012) (in Japanese)

  33. F.W.J. Olver et al: NIST Handbook of Mathematical Functions, Cambridge University Press, (2010)

  34. M. Reed, B. Simon: Methods of Modern Mathematical Physics, vol. 2: Fourier Analysis, Self-adjointness, Academic Press, (1975)

  35. M. Reed, B. Simon: Methods of Modern Mathematical Physics, vol. 3: Scattering Theory, Academic Press, (1979)

  36. M. Reed, B. Simon: Methods of Modern Mathematical Physics, vol. 4: Analysis of Operators, Academic Press, (1980)

  37. S. Richard, T. Umeda: Low energy spectral and scattering theory for relativistic Schrödinger operators, Hokkaido Math. J., 45 , 141-179, (2016)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Richard, J. Uchiyama, T. Umeda: Schrödinger operators with \(n\) positive eigenvalues: an explicit construction involving complex-valued potentials, Proc. Japan Acad. Ser. A Math. Sci. 92 , 7-12(2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. A. Rüland: Unique continuation for fractional Schrödinger equations with rough potentials, Comm. Part. Diff. Eqs. 40 (2015), 77-114

    Article  MATH  Google Scholar 

  40. A. Rüland: On quantitative unique continuation properties of fractional Schrödinger equations: Doubling, vanishing order and nodal domain estimates, Trans. Amer. Math. Soc. 369 (2017), 2311-2362

    Article  MathSciNet  MATH  Google Scholar 

  41. W. Schlag: Dispersive estimates for Schrödinger operators: A survey, in: Mathematical Aspects of Nonlinear Dispersive Equations (J. Bourgain, C.E. Kenig, S. Klainerman, eds.), Princeton University Press, pp. 255–285, (2007)

  42. K. Schmüdgen: Unbounded Self-adjoint Operators on Hilbert Space, Springer Dordrecht Heidelberg New York London, 2012

    Book  MATH  Google Scholar 

  43. I. Seo: On unique continuation for Schrödinger operators of fractional and higher orders, Math. Nachr. 287 (2014), 699-703

    Article  MathSciNet  MATH  Google Scholar 

  44. I. Seo: Unique continuation for fractional Schrödinger operators in three and higher dimensions, Proc. AMS 143 (2015), 1661-1664

    Article  MATH  Google Scholar 

  45. B. Simon: Trace Ideals and their Applications, 2nd ed., Amer. Math. Soc., (2005)

  46. E.M. Stein: Singular Integrals and Differentiability Properties of Functions, Princeton University Press, (1970)

  47. N. Teranishi: Absence of ground states of generalized spin-boson models, Kyushu J. Math. 72 , 1-14, (2018)

    Article  MathSciNet  MATH  Google Scholar 

  48. T. Umeda: Generalized eigenfunctions of relativistic Schrödinger operators I, Electron. J. Differential Equations 127 , 1-46 (2006)

    MATH  Google Scholar 

  49. R.A. Weder: Spectral properties of one-body relativistic spin-zero Hamiltonians, Ann. Inst. H. Poincaré, Sect. A (N.S.) 20 , 211–220 (1974)

Download references

Acknowledgements

AI thanks JSPS KAKENHI (Grant Numbers JP20K03625, JP21K03279 and JP21KK0245) and Tokyo University of Science Grant for International Joint Research for support. JL gratefully thanks the hospitality of IHES, Bures-sur-Yvette, and both thank the Isaac Newton Institute for Mathematical Sciences, Cambridge, for support (EPSRC grant no EP/K032208/1) and hospitality during the programme “Fractional Differential Equations” where work on this paper was undertaken. IS thanks JSPS KAKENHI (Grant Numbers JP16 K17612 and JP20K03628) for support. The authors thank Professor Masahito Ohta of Tokyo University of Science for his valuable comments and also thank reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuhide Ishida.

Ethics declarations

Conflict of interest

All authors have declare that they have no conflict of interest.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishida, A., Lőrinczi, J. & Sasaki, I. Absence of embedded eigenvalues for non-local Schrödinger operators. J. Evol. Equ. 22, 82 (2022). https://doi.org/10.1007/s00028-022-00836-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00028-022-00836-0

Keywords

Mathematics Subject Classification

Navigation