Skip to main content
Log in

Self-similar asymptotics for solutions to the intermediate long-wave equation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We consider the Cauchy problem for the intermediate long-wave equation

$$\begin{aligned} u_{t}-\partial _{x}u^{2}+\frac{1}{\vartheta }u_{x}+VP\int _{\mathbb {R}}\frac{1}{2\vartheta }\coth \left( \frac{\pi \left( y-x\right) }{2\vartheta }\right) u_{yy}\left( t,y\right) \mathrm{d}y=0, \end{aligned}$$

where \(\vartheta >0\). Our purpose in this paper is to prove the large time asymptotic behavior of solutions under the nonzero mass condition \(\int u_{0}\left( x\right) \mathrm{d}x\ne 0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Abdelouhab, Nonlocal dispersive equations in weighted Sobolev spaces. Differential Integral Equations 5 (1992), no. 2, 307–338.

    MathSciNet  MATH  Google Scholar 

  2. L. Abdelouhab, J. Bona, M. Felland and J. Saut, Nonlocal Models for Nonlinear Dispersive Waves, Phisica D, 40 (1989), 360–392.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.P. Albert, J. Bona and D.B. Henry, Sufficient Conditions for Stability of Solitary-Wave solutions of model Equation for Long-Waves, Phys. 240 (1987), 343, 366.

    MathSciNet  MATH  Google Scholar 

  4. M.P. Arciga and E.I. Kaikina, Intermediate long-wave equation on a half-line. J. Evol. Equ. 11 (2011), no. 4, 743–770.

    Article  MathSciNet  MATH  Google Scholar 

  5. F. Benitez, and E.I. Kaikina, Dirichlet problem for intermediate long-wave equation. Differential Integral Equations 24 (2011), no. 11–12, 1163–1192.

    MathSciNet  MATH  Google Scholar 

  6. J. L. Bona, D. Lannes and J.-C. Saut, Asymptotic models for internal waves, J. Math. Pures. Appl. 89 (2008), 538–566.

    Article  MathSciNet  MATH  Google Scholar 

  7. A. P. Calderon and R. Vaillancourt, A class of bounded pseudo-differential operators, Proc. Nat. Acad. Sci. U.S.A. 69 (1972), 1185–1187.

    Article  MathSciNet  MATH  Google Scholar 

  8. H.H. Chen and V.C. Lee, Internal-Wave Solutions of Fluids with Finite Depth, Phys. Rev. Lett. 43 (1979), 264.

    Article  MathSciNet  Google Scholar 

  9. R. R. Coifman and Y. Meyer, Au dela des operateurs pseudo-differentiels, Societe Mathematique de France, Paris, 1978, 185 pp.

    MATH  Google Scholar 

  10. H. O. Cordes, On compactness of commutators of multiplications and convolutions, and boundedness of pseudodifferential operators, J. Funct. Anal. 18 (1975), 115–131.

    Article  MathSciNet  MATH  Google Scholar 

  11. P. Deift and X. Zhou, A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation, Ann. of Math. 137 (1993), no. 2, 295–368.

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Deift and X. Zhou, Asymptotics for the Painlevé II equation, Comm. Pure Appl.Math. 48 (1995), 277–337.

    Article  MathSciNet  MATH  Google Scholar 

  13. M.V. Fedoryuk, Asymptotic Methods in Analysis, in: Analysis. I. Integral representations and asymptotic methods. Encyclopaedia of Mathematical Sciences, 13. Springer-Verlag, Berlin, 1989. vi+238 pp.

  14. P. Germain, F. Pusateri and F. Rousset, Asymptotic stability of solitons for mKdV, Advances in Mathematics, 299 (2016), pp. 272–330.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Ginibre and G. Velo, Smoothing Properties and Existence of Solutions for the Generalized Benjamin–Ono Equations, J. Diff. Eq. 93 (1991), 150–212.

    Article  MathSciNet  MATH  Google Scholar 

  16. L. Grafakos and S. Oh, The Kato–Ponce inequality, Comm. Partial Differential Equations, 39 (2014) (6): 1128–1157.

    Article  MathSciNet  MATH  Google Scholar 

  17. B. Harrop-Griffiths, Long time behavior of solutions to the mKdV. Commun. Partial Differential Equations 41 (2016), no. 2, pp. 282–317.

    Article  MathSciNet  MATH  Google Scholar 

  18. N. Hayashi, Global existence of small solutions to quadratic nonlinear Schrödinger equations, Commun. P.D.E., 18 (1993), pp. 1109–1124.

  19. N. Hayashi and P. I. Naumkin,Large time behavior of solutions for the modified Korteweg–de Vries equation, International Mathematics Research Notices, (1999), pp. 395–418.

  20. N. Hayashi and P.I. Naumkin, On the Modified Korteweg–De Vries Equation, Mathematicl Physics, Analysis and Geometry and Analysis, 4 (2001), pp. 197–227.

    MathSciNet  MATH  Google Scholar 

  21. N. Hayashi and P.I. Naumkin, The initial value problem for the cubic nonlinear Klein–Gordon equation, Zeitschrift fur Angewandte Mathematik und Physik, 59(2008), no. 6, pp. 1002–1028.

    Article  MathSciNet  MATH  Google Scholar 

  22. N. Hayashi and P. Naumkin, Factorization technique for the fourth-order nonlinear Schrödinger equation. Z. Angew. Math. Phys. 66 (2015), no. 5, 2343–2377.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Hayashi and P. Naumkin, On the inhomogeneous fourth-order nonlinear Schrödinger equation. J. Math. Phys. 56 (2015), no. 9, 093502, 25 pp.

  24. N. Hayashi and P.I. Naumkin, Factorization technique for the modified Korteweg–de Vries equation. SUT J. Math. 52 (2016), no. 1, 49–95.

    MathSciNet  MATH  Google Scholar 

  25. N. Hayashi and T. Ozawa, Scattering theory in the weighted \(L^{2}(R^{n})\) spaces for some Schrödinger equations, Ann. I.H.P. (Phys. Théor.), 48 (1988), pp. 17–37.

    MATH  Google Scholar 

  26. I. L. Hwang, The \(L^{2}\) -boundedness of pseudodifferential operators, Trans. Amer. Math. Soc. 302 (1987), no. 1, 55–76.

    MathSciNet  MATH  Google Scholar 

  27. M. Ifrim and D. Tataru, Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension. Nonlinearity 28 (2015), no. 8, 2661–2675.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Ifrim and D. Tataru, Two dimensional water waves in holomorphic coordinates II: Global solutions. Bull. Soc. Math. France 144 (2016), no. 2, 369–394.

    Article  MathSciNet  MATH  Google Scholar 

  29. A.R. Its and V.Yu. Novokshenov, The isomonodromic deformation method in the theory of Painlevé equations. Lecture Notes in Mathematics, 1191. Springer-Verlag, Berlin, 1986, 313 pp.

  30. R.I. Joseph, Solitary waves in a finite depth fluid. J. Phys. A 10 (1977), 225–227.

    Article  MathSciNet  Google Scholar 

  31. R. I. Joseph and R. Egri, Multi-soliton Solutions in a Finite Depth Fluid, J. Phys. A. 11 (1978), L97.

    Article  MATH  Google Scholar 

  32. E.I. Kaikina, Mixed initial-boundary value problem for intermediate long-wave equation. J. Math. Phys. 53 (2012), no. 3, 033701, 22 pp.

  33. T. Kato and G. Ponce,Commutator estimates and the Euler and Navier–Stokes equations, Comm. Pure Appl. Math., 41 (1988) (7), 891–907.

    Article  MathSciNet  MATH  Google Scholar 

  34. C. E. Kenig, G. Ponce, and L. Vega, Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Comm. Pure Appl. Math., 46 (1993)(4) 527–620.

    Article  MathSciNet  MATH  Google Scholar 

  35. Y. Kodama, M.J. Ablowitz, J. Satsuma, Direct and inverse scattering problems of the nonlinear intermediate long wave equation. J. Math. Phys. 23 (1982), no. 4, 564–576.

    Article  MathSciNet  MATH  Google Scholar 

  36. T. Kubota, D.R.S. Ko and D. Dobbs, Weakly-nonlinear, Long Internal Gravity Waves in Stratified Fluids on Finite Depth., J. Hidrodinaut, 12 (1978), 157.

    Google Scholar 

  37. D.R. Lebedev and A. D. Radul, Generalized Internal Long Wave Equation Construction, Hamiltonian Structure, and Conservation Laws. Commun. Math. Phys. 91 (1983), 543–555.

    Article  MathSciNet  MATH  Google Scholar 

  38. Y. Martel and D. Pilod, Construction of a minimal mass blow-up solution for the modified Benjamin–Ono equation, Math. Annalen 369 (2017), 153–245.

    Article  MathSciNet  MATH  Google Scholar 

  39. P.I. Naumkin and I. Sánchez-Suárez, On the modified intermediate long wave equation. Nonlinearity, 31 (2018), 980–1008.

    Article  MathSciNet  MATH  Google Scholar 

  40. I.P. Naumkin, Sharp asymptotic behavior of solutions for cubic nonlinear Schrödinger equations with a potential, Journal of Mathematical Physics 57, 051501 (2016); https://doi.org/10.1063/1.4948743.

    Article  MathSciNet  MATH  Google Scholar 

  41. I.P. Naumkin, Initial-boundary value problem for the one dimensional Thirring model, Journal of Differential equations, Volume 261, Issue 8, 2016, Pages 4486–4523.

    Article  MathSciNet  MATH  Google Scholar 

  42. G. Perelman and L. Vega, Self-similar planar curves related to modified Korteweg–de Vries equation, J. Differential Equations 235 (2007), no. 1, 56–73.

    Article  MathSciNet  MATH  Google Scholar 

  43. P. M. Santini, M. J. Ablowitz and A. S. Fokas, On the limit from the intermediate long wave equation to the Benjamin–Ono equation. J. Math. Phys. 25 (1984), no. 4, 892–899.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Satsuma, M. J. Ablowitz and Y. Kodama, On a Internal Wave Equations Describing a Stratified fluid with Finite Depth, Phys. Lett. A 73 (1979), 283–286.

    Article  MathSciNet  Google Scholar 

  45. J. Satsuma, M.J. Ablowitz and Y. Kodama, Nonlinear Intermediate Long-wave Equation: Analysis and Methods of Solutions, Phys. Rev. Lett. 46 (1981), 687.

    Article  MathSciNet  Google Scholar 

  46. J. Satsuma, T.R. Taha and M.J. Ablowitz, On a Bäcklund transformation and scattering problem for the modified intermediate long wave equation. J. Math. Phys. 25 (1984), no. 4, 900–904.

    Article  MathSciNet  MATH  Google Scholar 

  47. J.-C. Saut, Sur quelques généralisations de l’équation de KdV I, J. Math. Pures Appl., 58 (1979), 21–61.

    MathSciNet  MATH  Google Scholar 

  48. G. Scoufis, Ch. M. Cosgrove, An application of the inverse scattering transform to the modified intermediate long wave equation. J. Math. Phys. 46 (2005), no. 10, 103501, 39 pp.

Download references

Acknowledgements

We would like to thank unknown referees for useful suggestions and comments. The work of P.I.N. is partially supported by CONACYT and PAPIIT project IN100616.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel I. Naumkin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernal-Vílchis, F., Naumkin, P.I. Self-similar asymptotics for solutions to the intermediate long-wave equation. J. Evol. Equ. 19, 729–770 (2019). https://doi.org/10.1007/s00028-019-00498-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00498-5

Keywords

Mathematics Subject Classification

Navigation