Skip to main content
Log in

The obstacle problem for parabolic minimizers

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We prove an existence result for parabolic minimizers of convex variational functionals with p-growth and irregular obstacles. In particular, the obstacle might be unbounded, discontinuous and satisfy no regularity assumption with respect to the time variable. Moreover, we treat the case of obstacles which do not coincide along the parabolic boundary with the prescribed time-dependent Dirichlet boundary values. The existence result for sufficiently regular obstacles coinciding on the lateral boundary with the given Dirichlet boundary values is obtained via the method of minimizing movements. More general boundary values and obstacles are treated by approximation with regular boundary values and obstacles in the sense of a stability result of solutions with respect to boundary values and the obstacles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alt and S. Luckhaus. Quasilinear elliptic-parabolic differential equations. Math. Z., 183(3):311–341, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  2. V. Bögelein, F. Duzaar, and P. Marcellini. Existence of evolutionary variational solutions via the calculus of variations. J. Differential Equations, 256: 3912–3942, 2014.

    Article  MATH  MathSciNet  Google Scholar 

  3. V. Bögelein, F. Duzaar, and P. Marcellini. Parabolic systems with \(p,q\)-growth: a variational approach. Arch. Ration. Mech. Anal., 210(1):219–267, 2013.

    Article  MATH  MathSciNet  Google Scholar 

  4. V. Bögelein, F. Duzaar, and G. Mingione. Degenerate problems with irregular obstacles. J. Reine Angew. Math., 650:107–160, 2011.

    MATH  MathSciNet  Google Scholar 

  5. V. Bögelein, T. Lukkari, and C. Scheven. The obstacle problem for the porous medium equation. Math. Ann., 363(1):455–499, 2015.

    Article  MATH  MathSciNet  Google Scholar 

  6. V. Bögelein and C. Scheven. Higher integrability in parabolic obstacle problems. Forum Math., 24(5):931–972, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. Brézis. Problèmes unilatéraux. J. Math. Pures Appl. (9) 51:1–168, 1972.

    MATH  Google Scholar 

  8. H. Brézis, Un problème d’evolution avec contraintes unilatérales dépendant du temps. C. R. Acad. Sci. Paris 274:A310–A312, 1972.

    MATH  Google Scholar 

  9. P. Charrier, G. Troianiello, On strong solutions to parabolic unilateral problems with obstacle dependent on time. J. Math. Anal. Appl. 65:110–125. 1978.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Kinnunen and P. Lindqvist. Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation. Ann. Mat. Pura Appl. (4), 185(3):411–435, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. Kinnunen, P. Lindqvist, and T. Lukkari. Perron’s method for the porous medium equation. J. Eur. Math. Soc. 18(12):2953–2969, 2016.

  12. T. Klimsiak and A. Rozkosz. Obstacle problem for semilinear parabolic equations with measure data. J. Evol. Equ. 15(2):457–491, 2015.

    Article  MATH  MathSciNet  Google Scholar 

  13. R. Korte, T. Kuusi, and J. Siljander. Obstacle problem for nonlinear parabolic equations. J. Differential Equations, 246(9):3668–3680, 2009.

    Article  MATH  MathSciNet  Google Scholar 

  14. R. Landes. On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc. Roy. Soc. Edinburgh Sect. A 89(3-4):217–237: 1981.

    Article  MATH  MathSciNet  Google Scholar 

  15. A. Lichnewsky and R. Temam. Pseudosolutions of the time-dependent minimal surface problem. J. Differential Equations, 30(3):340–364, 1978.

    Article  MATH  MathSciNet  Google Scholar 

  16. P. Lindqvist and M. Parviainen. Irregular time dependent obstacles. J. Funct. Anal., 263(8):2458–2482, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  17. J.-L. Lions. Quelques méthodes de résolution des problèmes aux limites non linéaires. Dunod, 1969.

  18. J. Lions, G. Stampacchia, Variational inequalities. Comm. Pure Appl. Math. 20:493–519, 1967.

    Article  MATH  MathSciNet  Google Scholar 

  19. P. Marcellini, Approximation of quasiconvex functions, and lower semicontinuity of multiple integrals. Manuscripta Math. 51(1–3):1–28, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  20. F. Mignot, J. Puel, Inéquations d’évolution paraboliques avec convexes dépendant du temps. Applications aux inéquations quasi variationnelles d’évolution. Arch. Rational Mech. Anal. 64(1): 59–91, 1977.

    Article  MATH  Google Scholar 

  21. M. Pierre, Problèmes d’evolution avec contraintes unilatérales et potentiels paraboliques. Comm. Partial Differential Equations 4(10):1149–1197, 1979.

    Article  MATH  Google Scholar 

  22. M. Pierre, Représentant précis d’un potentiel parabolique. Séminaire de Theorie du Potentiel, Paris, No. 5, 186–228. Lecture Notes in Math. 814, Springer, Berlin, 1980.

  23. C. Scheven, Existence and Gradient Estimates in Nonlinear Problems with Irregular Obstacles. Habilitationsschrift, 2011.

  24. C. Scheven. Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles. Manuscripta Math., 146(1-2):7–63, 2015.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Scheven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bögelein, V., Duzaar, F. & Scheven, C. The obstacle problem for parabolic minimizers. J. Evol. Equ. 17, 1273–1310 (2017). https://doi.org/10.1007/s00028-017-0384-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-017-0384-4

Keywords

Mathematics Subject Classification

Navigation