Skip to main content
Log in

On quasilinear parabolic evolution equations in weighted L p -spaces II

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

Our study of abstract quasi-linear parabolic problems in time-weighted L p -spaces, begun in Köhne et al. (J Evol Equ 10:443–463, 2010), is extended in this paper to include singular lower-order terms, while keeping low initial regularity. The results are applied to reaction-diffusion problems, including Maxwell–Stefan diffusion, and to geometric evolution equations like the surface diffusion flow or the Willmore flow. The method presented here will be applicable to other parabolic systems, including free boundary problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Amann, Dynamic theory of quasilinear parabolic equations. I. Abstract evolution equations, Nonlinear Anal. 12 (1988), no. 9, 895–919.

  2. H. Amann, Dynamic theory of quasilinear parabolic equations. III. Global existence, Math. Z. 202 (1989), no. 2, 219–250.

  3. H. Amann, Dynamic theory of quasilinear parabolic equations. II. Reaction-diffusion systems, Differential Integral Equations 3 (1990), no. 1, 13–75.

  4. H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, Function spaces, differential operators and nonlinear analysis (Friedrichroda, 1992) Teubner-Texte Math., vol. 133, Teubner, Stuttgart, 1993, pp.9–126.

  5. H. Amann, Quasilinear parabolic problems via maximal regularity, Adv. Differential Equations 10 (2005), no. 10, 1081–1110.

  6. S. B. Angenent, Nonlinear analytic semiflows, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), no. 1–2, 91–107.

  7. T. Asai, Quasilinear parabolic equation and its applications to fourth order equations with rough initial data, J. Math. Sci. Univ. Tokyo 19 (2012), 507–532.

    Google Scholar 

  8. Bothe D.: On the Maxwell–Stefan approach to multicomponent diffusion. Progr. Nonlinear Differential Equations Appl. 80, 81–93 (2011)

    MathSciNet  Google Scholar 

  9. Ph. Clément, S. Li, Abstract parabolic quasilinear equations and application to a groundwater flow problem, Adv. Math. Sci. Appl. 3 (1993/94), Special Issue, 17–32.

  10. Ph. Clément, G. Simonett, Maximal regularity in continuous interpolation spaces and quasilinear parabolic equations, J. Evol. Equ. 1 (2001), no. 1, 39–67.

  11. G. Da Prato, P. Grisvard, Equations d’évolution abstraites non linéaires de type parabolique, Ann. Mat. Pura Appl. (4) 120 (1979), 329–396.

  12. R. Denk, M. Hieber, J. Prüss, Optimal L p -L q -estimates for parabolic boundary value problems with inhomogeneous data, Math. Z. 257 (2007), no. 1, 193–224.

  13. J. Escher, On quasilinear fully parabolic boundary value problems, Differential Integral Equations 7 (1994), no. 5–6, 1325–1343.

  14. A. Friedman, Partial differential equations, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1969.

  15. M. Köhne, J. Prüss, M. Wilke, On quasilinear parabolic evolution equations in weighted L p -spaces, J. Evol. Equ. 10 (2010), 443–463.

  16. O. A. Ladyžhenskaja, V. A. Solonnikov, N. N. Ural’ceva, Linear and quasilinear equations of parabolic type, Translations of Mathematical Monographs, Vol. 23, American mathematical Society, Providence, R.I., 1967.

  17. A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems, Progress in Nonlinear Differential Equations and their Applications, 16, Birkhäuser Verlag, Basel, 1995.

  18. Meyries M.: Global attractors in stronger norms for a class of parabolic systems with nonlinear boundary conditions.. Nonlinear Anal. 75, 2922–2935 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Meyries M., Schnaubelt R.: Maximal regularity with temporal weights for parabolic problems with inhomogeneous boundary conditions. Math. Nachr. 285, 1032–1051 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Meyries, R. Schnaubelt, Interpolation, embeddings and traces of anisotropic fractional Sobolev spaces with temporal weights. J. Funct. Anal. 262, 1200–1229 (2012).

    Google Scholar 

  21. Prüss J.: Maximal regularity for evolution equations in L p -spaces. Conf. Semin. Mat. Univ. Bari 285, 1–39 (2002)

    Google Scholar 

  22. J. Prüss, G. Simonett, Maximal regularity for evolution equations in weighted L p -spaces, Arch. Math. (Basel) 82 (2004), no. 5, 415–431.

  23. J. Prüss, G. Simonett, On the mainfold of closed hypersurfaces in \({\mathbb{R}^n}\) , Discrete Contin. Dyn. Syst. 33 (2013), no. 11/12, 5407–5428.

  24. J. Prüss, G. Simonett, R. Zacher, On convergence of solutions to equilibria for quasilinear parabolic problems, J. Differential Equations 246 (2009), 3902–3931.

    Google Scholar 

  25. G. Simonett, Quasilinear parabolic equations and semiflows, Evolution equations, control theory, and biomathematics (Han sur Lesse, 1991), Lecture Notesin Pure and Appl. math., vol. 155, Dekker, New York, 1994, pp. 523–536.

  26. G. Simonett, Center manifolds for quasilinear reaction-diffusion systems, Differential Integral Equations 8 (1995), no. 4, 753–796.

  27. H. Triebel, Theory of function spaces, Monographs in Mathematics, Birkhäuser, Basel (1983).

  28. A. Yagi, Abstract quasilinear evolution equations of parabolic type in Banach spaces, Boll. Un. Mat. Ital. B (7) 5 (1991), no. 2, 341–368.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mathias Wilke.

Additional information

The work of Jeremy LeCrone was partially supported by a grant from the Simons Foundation (#245959 to G. Simonett).

Rights and permissions

Reprints and permissions

About this article

Cite this article

LeCrone, J., Prüss, J. & Wilke, M. On quasilinear parabolic evolution equations in weighted L p -spaces II. J. Evol. Equ. 14, 509–533 (2014). https://doi.org/10.1007/s00028-014-0226-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-014-0226-6

Mathematics Subject Classification (1991)

Keywords

Navigation