Skip to main content
Log in

Asymptotic uniform boundedness of energy solutions to the Penrose-Fife model

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We study a Penrose-Fife phase transition model coupled with homogeneous Neumann boundary conditions. Improving previous results, we show that the initial value problem for this model admits a unique solution under weak conditions on the initial data. Moreover, we prove asymptotic regularization properties of weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon S., Douglis A., Nirenberg L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I., Comm. Pure Appl. Math. 12, 623–727 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alikakos N.D.: L p bounds of solutions of reaction-diffusion equations, Comm. Partial Differential Equations. 4, 827–868 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. Baiocchi C.: Sulle equazioni differenziali astratte lineari del primo e del secondo ordine negli spazi di Hilbert (Italian). Ann. Mat. Pura Appl. 4(76), 233–304 (1967)

    Article  MathSciNet  Google Scholar 

  4. V.Barbu, “Nonlinear Semigroups and Differential Equations in Banach Spaces”, Noordhoff, Leyden, 1976.

  5. Barbu V., Colli P., Gilardi G., Grasselli M.: Existence, uniqueness, and longtime behavior for a nonlinear Volterra integrodifferential equation. Differential Integral Equations. 13, 1233–1262 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Bonforte M., Vázquez J.L.: Positivity, local smoothing, and Harnack inequalities for very-fast diffusion equations. Adv.Math. 2, 529–578 (2010)

    Article  Google Scholar 

  7. H.Brezis, “Opérateurs Maximaux Monotones et Sémi-groupes de Contractions dans les Espaces de Hilbert”, North-Holland Math. Studies 5, North-Holland, Amsterdam, 1973.

  8. Brezis H.: Integrales convexes dans les espaces de Sobolev. Israel J. Math. 13, 9–23 (1972)

    Article  MathSciNet  Google Scholar 

  9. Brezis H., Strauss W.A.: Semi-linear second-order elliptic equations in L 1, J.Math. Soc. Japan. 25, 565–590 (1973)

    MathSciNet  MATH  Google Scholar 

  10. Colli P., Gilardi G., Rocca E., Schimperna G.: On a Penrose-Fife phase-field model with nonhomogeneous Neumann boundary conditions for the temperature. Differential Integral Equations. 17, 511–534 (2004)

    MathSciNet  MATH  Google Scholar 

  11. Colli P., Laurençot Ph.: Weak solutions to the Penrose-Fife phase field model for a class of admissible heat flux laws. Phys.D: 111, 311–334 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. P.Colli, Ph.Laurençot, and J.Sprekels, Global solution to the Penrose-Fife phase field model with special heat flux laws, Variations of domain and free-boundary problems in solid mechanics (Paris, 1997), 181–188, Solid Mech. Appl., 66, Kluwer Acad. Publ., Dordrecht, 1999.

  13. Damlamian A., Kenmochi N.: Evolution equations generated by subdifferentials in the dual space of H 1(Ω), Discrete Contin. Dynam. Systems. 5, 269–278 (1999)

    MathSciNet  MATH  Google Scholar 

  14. Feireisl E., Schimperna G.: Large time behavior of solutions to Penrose-Fife phase change models. Math. Methods Appl. Sci. 28, 2117–2132 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilardi G., Marson A.: On a Penrose-Fife type system with Dirichlet boundary conditions for the temperature. Math. Methods Appl. Sci. 26, 1303–1325 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grun-Rehomme M.: Caractérisation du sous-différentiel d’intégrandes convexes dans les espaces de Sobolev (French). J.Math. Pures Appl. 9(56), 149–156 (1977)

    MathSciNet  Google Scholar 

  17. Ito A., Kenmochi N., Kubo M.: Non-isothermal phase transition models with Neumann boundary conditions. Nonlinear Anal. 53, 977–996 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kenmochi N.: Neumann problems for a class of nonlinear degenerate parabolic equations. Differential Integral Equations. 3, 253–273 (1990)

    MathSciNet  MATH  Google Scholar 

  19. N.Kenmochi and M.Niezgódka, Systems of nonlinear parabolic equations for phase change problems, Adv. Math. Sci. Appl., 3 (1993/94), 89–117.

    Google Scholar 

  20. O.A.Ladyzhenskaya, V.A.Solonnikov, and N.N. Ural’ceva, “Linear and Quasi-linear Equations of Parabolic Type”, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 1968.

  21. Laurençot Ph.: Solutions to a Penrose-Fife model of phase-field type. J. Math. Anal. Appl. 185, 262–274 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laurençot Ph.: Weak solutions to a Penrose-Fife model with Fourier law for the temperature. J. Math. Anal. Appl. 219, 331–343 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miranville A., Zelik S.: Robust exponential attractors for Cahn-Hilliard type equations with singular potentials. Math. Methods Appl. Sci. 27, 545–582 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Nochetto R.H., Savaré G.: Nonlinear evolution governed by accretive operators in Banach spaces: error control and applications. Math. Models Methods Appl. Sci. 16, 439–477 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Penrose O., Fife P.C.: Thermodynamically consistent models of phase-field type for the kinetics of phase transitions. Phys. D. 43, 44–62 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. Penrose O., Fife P.C.: On the relation between the standard phase-field model and a “thermodynamically consistent” phase-field model. Phys. D. 69, 107–113 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.Prüss and M.Wilke, On conserved Penrose-Fife type models, ArXiv:1002.0928, to appear in Progress in Nonlinear Differential Equations and Their Applications.

  28. Rocca E., Schimperna G.: Universal attractor for some singular phase transition systems. Phys.D. 192, 279–307 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schimperna G.: Global and exponential attractors for the Penrose-Fife system. Math. Models Methods Appl. Sci. 19, 969–991 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. R.E.Showalter, “Monotone Operators in Banach space and Nonlinear Partial Differential Equations”. Mathematical Surveys and Monographs, 49. American Mathematical Society, Providence, RI, 1997

  31. Simon J.: Compact sets in the space L p(0,T;B). Ann. Mat. Pura Appl. (4), 146 65–96 (1987)

    Google Scholar 

  32. Sprekels J., Zheng S.: Global smooth solutions to a thermodynamically consistent model of phase-field type in higher space dimensions. J.Math. Anal. Appl. 176, 200–223 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vázquez J.L.: “Smoothing and decay estimates for nonlinear diffusion equations”. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  34. Zheng S.: Global existence for a thermodynamically consistent model of phase field type. Differential Integral Equations. 5, 241–253 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Segatti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schimperna, G., Segatti, A. & Zelik, S. Asymptotic uniform boundedness of energy solutions to the Penrose-Fife model. J. Evol. Equ. 12, 863–890 (2012). https://doi.org/10.1007/s00028-012-0159-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-012-0159-x

Mathematics Subject Classification

Keywords

Navigation