Skip to main content
Log in

A variational view at the time-dependent minimal surface equation

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

We present a global variational approach to the L 2-gradient flow of the area functional of cartesian surfaces through the study of the so-called weighted energy-dissipation (WED) functional. In particular, we prove a relaxation result which allows us to show that minimizers of the WED converge in a quantitatively prescribed way to gradient-flow trajectories of the relaxed area functional. The result is then extended to general parabolic quasilinear equations arising as gradient flows of convex functionals with linear growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Akagi G., Stefanelli U.: A variational principle for doubly nonlinear evolution. Appl. Math. Lett. 23(9), 1120–1124 (2011)

    Article  MathSciNet  Google Scholar 

  2. G.Akagi, U Stefanelli. Weighted energy-dissipation functionals for doubly nonlinear evolution. J. Funct. Anal., to appear, 2011.

  3. L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinuity problems. Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2000.

  4. Andreu-Vaillo F., Caselles V., Mazón. J.M.: A parabolic quasilinear problem for linear growth functionals. Rev. Mat. Iberoamericana 18(1), 135–185 (2002)

    MathSciNet  Google Scholar 

  5. Andreu-Vaillo F., Caselles V., Mazón J.M.: Existence and uniqueness of a solution for a parabolic quasilinear problem for linear growth functionals with L 1 data. Math. Ann. 322(1), 139–206 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Andreu-Vaillo, V. Caselles, and J. M. Mazón. Parabolic quasilinear equations minimizing linear growth functionals, volume 223 of Progress in Mathematics. Birkhäuser Verlag, Basel, 2004.

  7. Anzellotti G.: The Euler equation for functionals with linear growth. Trans. Amer. Math. Soc. 290(2), 483–501 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Anzellotti G.: BV solutions of quasilinear PDEs in divergence form. Comm. Partial Differential Equations 12(1), 77–82 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223.

  10. H. Brezis. Monotonicity methods in Hilbert spaces and some application to nonlinear partial differential equations. In Contrib. to nonlin. functional analysis. Proc. Sympos. Univ. Wisconsin, Madison, pages 101–156. Academic Press, New York, 1971.

  11. H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. Number 5 in North Holland Math. Studies. North-Holland, Amsterdam, 1973.

  12. Caselles V., Chambolle A., Novaga M.: The discontinuity set of solutions of the TV denoising problem and some extensions. Multiscale Model. Simul. 6(3), 879–894 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. V. Caselles, A. Chambolle, D. Cremers, M. Novaga, and Th. Pock. An introduction to Total Variation for image analysis. In Theoretical Foundations and Numerical Methods for Sparse Recovery, M. Fornasier (Ed.). Radon Series on Computational and Applied Mathematics, De Gruyter, 2010.

  14. ContiS. Ortiz M.: Minimum principles for the trajectories of systems governed by rate problems. J. Mech. Phys. Solids 56, 1885–1904 (2008)

    Article  MathSciNet  Google Scholar 

  15. Crandall M.G., Pazy A.: Semi-groups of nonlinear contractions and dissipative sets. J. Funct. Anal. 3, 376–418 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  16. Demengel F., Temam R.: Convex functions of a measure and applications. Indiana Univ. Math. J. 33(5), 673–709 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. I. Ekeland and R. Temam. Analyse convexe et problèmes variationnels. Dunod Gauthier-Villars, Paris, 1974.

  18. E. Giusti. Minimal surfaces and functions of bounded variation. Monographs in Mathematics, 80. Birkhäuser Verlag, Basel, 1984.

  19. Goffman C., Serrin J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31, 159–178 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hirano N.: Existence of periodic solutions for nonlinear evolution equations in Hilbert spaces. Proc. Amer. Math. Soc. 120(1), 185–192 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. T. Ilmanen . Elliptic regularization and partial regularity for motion by mean curvature. Mem. Amer. Math. Soc., 108(520):x+90, 1994.

    Google Scholar 

  22. Kōmura Y.: Nonlinear semi-groups in Hilbert space. J. Math. Soc. Japan 19, 493–507 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Lichnewsky and R. Temam. Surfaces minimales d’évolution: le concept de pseudo-solution. C. R. Acad. Sci. Paris Sér. A-B, 284(15):A853–A856, 1977.

  24. Lichnewsky A., Temam R.: Pseudosolutions of the time-dependent minimal surface problem. J. Differential Equations 30(3), 340–364 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  25. J.-L. Lions and E. Magenes. Non-homogeneus boundary value problems and applications, volume 1. Springer-Verlag, New York–Heidelberg, 1972.

  26. Mielke A., Ortiz M.: A class of minimum principles for characterizing the trajectories and the relaxation of dissipative systems. ESAIM Control Optim. Calc. Var. 14(3), 494–516 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mielke A., Stefanellis. U.: A discrete variational principle for rate-independent evolution. Adv. Calc. Var. 1(4), 399–431 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mielke A., Stefanelli U.: Weighted energy-dissipation functionals for gradient flows. ESAIM Control Optim. Calc. Var. 17, 52–85 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Serrin J.: On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101, 139–167 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. U. Stefanelli. The De Giorgi conjecture on elliptic regularization. Math. Models Meth. Appl. Sci., to appear, 2011.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Spadaro.

Additional information

U.S. is partially supported by FP7-IDEAS-ERC-StG Grant #200497 (BioSMA).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spadaro, E., Stefanelli, U. A variational view at the time-dependent minimal surface equation. J. Evol. Equ. 11, 793–809 (2011). https://doi.org/10.1007/s00028-011-0111-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-011-0111-5

Mathematics Subject Classification (2000)

Keywords

Navigation