Skip to main content

Advertisement

Log in

The structure and functionality of communities and food webs in streams along the epigean–hypogean continuum: unifying ecological stoichiometry and metabolic theory of ecology

  • Review Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Subterranean streams represent unique heterotrophic ecosystems, usually supported by organic matter imported from the surface. Traditionally, the biological communities from subterranean streams were characterized as simple associations, with low diversity and species abundance, comprising mostly aquatic invertebrates connected by few trophic links compared with those of the surface. However, these features have not yet been described in the wider context of fluxes of energy and nutrients through food webs along a gradual switch from autotrophy (dominated by photosynthesis) towards heterotrophy (dominated by detritus) following the surface–subterranean continuum. Combining the most recent predictions of Ecological Stoichiometry and the Metabolic Theory of Ecology, this article provides a theoretical framework aiming to explain the patterns observed along the surface–subterranean continuum in streams. It is predicted that the main factors constraining the structure and functioning of communities and food webs are the decline in the quantity and diversity of basal resources along this gradient, along with nutrients availability in water that affects food quality. With increasing availability of dissolved nutrients in water, sinking-cave streams are hypothesized to fluctuate between being N and/ or P co-limited to C-limited. Combined, the quantity, quality, and diversity of basal resources regulate subterranean aquatic communities through bottom–up mechanisms, reflected in a decreased flux of macronutrients through food webs. The consequences of these bottom–up effects are decreased abundance, biomass, secondary production, consumption rate, and mean body size of communities, together with potential increases in the elemental imbalance for macronutrients, omnivory, trophic position, and niche width and overlap among aquatic consumers along the surface–subterranean continuum. The bottom–up effects induce changes in the topology of stream food webs, which become shorter, with lower trophic diversity at the base of the network, but increased connectance along this environmental gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arim M, Bozinovic F, Marquet PA (2007) On the relationship between trophic position, body mass and temperature: reformulating the energy limitation hypothesis. Oikos 116:1524–1530

    Article  Google Scholar 

  • Arim M, Abades S, Laufer G, Loureiro M, Marquet PA (2010) Food web structure and body size: trophic position and resource acquisition. Oikos 119:147–153

    Article  Google Scholar 

  • Arim M, Borthagaray AI, Giacomini HC (2016) Energetic constraints to food chain length in a metacommunity framework. Can J Fish Aquat Sci 73:685–692

    Article  Google Scholar 

  • Avaria-Llautureo J, Hernández CE, Rodríguez-Serrano E, Venditti C (2019) The decoupled nature of basal metabolic rate and body temperature in endotherm evolution. Nature 572:651–654

    Article  CAS  PubMed  Google Scholar 

  • Barnes C, Maxwell D, Reuman DC, Jennings S (2010) Global patterns in predator–prey size relationships reveal size dependency of trophic transfer efficiency. Ecology 91:222–232

    Article  PubMed  Google Scholar 

  • Benke AC (2018) River food webs: an integrative approach to bottom-up flow webs, top-down impact webs, and trophic position. Ecology 99:1370–1381

    Article  PubMed  Google Scholar 

  • Benstead JP, Rosemond AD, Cross WF, Wallace JB, Eggert SL, Suberkropp K, Gulis V, Greenwood JL, Tant CJ (2009) Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem. Ecology 90:2556–2566

    Article  PubMed  Google Scholar 

  • Bishop R, Humphreys WF, Longley G (2014) Epigean and hypogean Palaemonetes sp. (Decapoda, Palaemonidae) from Edwards Aquifer: an examination of trophic structure and metabolism. Subt Biol 14:79

    Google Scholar 

  • Boersma M, Elser JJ (2006) Too much of a good thing: on stoichiometrically balanced diets and maximal growth. Ecology 87:1325–1330

    Article  PubMed  Google Scholar 

  • Boersma M, Aberle N, Hantzsche FM, Schoo KL, Wiltshire KH, Malzahn AM (2008) Nutritional limitation travels up the food chain. Int Rev Hydrobiol 93:479–488

    Article  Google Scholar 

  • Bowman MF, Chambers PA, Schindler DW (2005) Changes in stoichiometric constraints on epilithon and benthic macroinvertebrates in response to slight nutrient enrichment of mountain rivers. Freshw Biol 50:1836–1852

    Article  CAS  Google Scholar 

  • Brett MT, Bunn SE, Chandra S, Galloway AW, Guo F, Kainz MJ, Kankaala P, Lau DCP, Moulton TP, Power ME, Rasmussen JB, Taipale SJ, Thorp JH, Wehr JD (2017) How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Fresh Biol 62:833–853

    Article  CAS  Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Brussock PP, Willis LD, Brown AV (1988) Leaf decomposition in an Ozark cave and spring. J Fresh Ecol 4:263–269

    Article  CAS  Google Scholar 

  • Bumpers PM, Maerz JC, Rosemond AD, Benstead JP (2015) Salamander growth rates increase along an experimental stream phosphorus gradient. Ecology 96:2994–3004

    Article  PubMed  Google Scholar 

  • Callisto M, Graça MA (2013) The quality and availability of fine particulate organic matter for collector species in headwater streams. Int Rev Hydrobiol 98:132–140

    Article  CAS  Google Scholar 

  • Chávez-Solís EM, Solís C, Simões N, Mascaró M (2020) Distribution patterns, carbon sources and niche partitioning in cave shrimps (Atyidae: Typhlatya). Sci Rep 10:1–16

    Article  CAS  Google Scholar 

  • Cheever BM, Webster JR, Bilger EE, Thomas SA (2013) The relative importance of exogenous and substrate-derived nitrogen for microbial growth during leaf decomposition. Ecology 94:1614–1625

    Article  CAS  PubMed  Google Scholar 

  • Cooney TJ, Simon KS (2009) Influence of dissolved organic matter and invertebrates on the function of microbial films in groundwater. Microb Ecol 58:599–610

    Article  PubMed  Google Scholar 

  • Craine JM, Morrow C, Fierer N (2007) Microbial nitrogen limitation increases decomposition. Ecology 88:2105–2113

    Article  PubMed  Google Scholar 

  • Cross WF, Benstead JP, Rosemond AD, Wallace J (2003) Consumer-resource stoichiometry in detritus-based streams. Ecol Let 6:721–732

    Article  Google Scholar 

  • Cross WF, Benstead JP, Frost PC, Thomas SA (2005) Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshw Biol 50:1895–1912

    Article  CAS  Google Scholar 

  • Cross WF, Wallace JB, Rosemond AD, Eggert SL (2006) Whole-system nutrient enrichment increases secondary production in a detritus-based ecosystem. Ecology 87:1556–1565

    Article  CAS  PubMed  Google Scholar 

  • Culver DC (1976) The evolution of aquatic cave communities. Am Nat 110:945–957

    Article  Google Scholar 

  • Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. University Press, Oxford

    Google Scholar 

  • Culver DC, Fong DW, Jernigan RW (1991) Species interactions in cave stream communities: experimental results and microdistribution effects. Am Midl Nat 126:364–379

    Article  Google Scholar 

  • Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Ann Rev Ecol Syst 10:147–172

    Article  Google Scholar 

  • Danger M, Gessner MO, Bärlocher F (2016) Ecological stoichiometry of aquatic fungi: current knowledge and perspectives. Fung Ecol 19:100–111

    Article  Google Scholar 

  • Darchambeau F, Faerøvig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:336–346

    Article  PubMed  Google Scholar 

  • de Ruiter P, Wolters V, Moore JC, Winemiller KO (2005) Food web ecology: playing Jenga and beyond. Science 309:68–71

    Article  PubMed  CAS  Google Scholar 

  • Demi LM, Benstead JP, Rosemond AD, Maerz JC (2018) Litter P content drives consumer production in detritus-based streams spanning an experimental N: P gradient. Ecology 99:347–359

    Article  PubMed  Google Scholar 

  • Demi LM, Benstead JP, Rosemond AD, Maerz JC (2020) Experimental N and P additions relieve stoichiometric constraints on organic matter flows through five stream food webs. J Anim Ecol 89:1468–1481

    Article  PubMed  Google Scholar 

  • Denno RF, Fagan WF (2003) Might nitrogen limitation promote omnivory among carnivorous arthropods? Ecology 84:2522–2531

    Article  Google Scholar 

  • Dickman EM, Newell JM, González MJ, Vanni MJ (2008) Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. PNAS 105:18408–18412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diehl S (2003) The evolution and maintenance of omnivory: dynamic constraints and the role of food quality. Ecology 84:2557–2567

    Article  Google Scholar 

  • Digel C, Curtsdotter A, Riede J, Klarner B, Brose U (2014) Unravelling the complex structure of forest soil food webs: higher omnivory and more trophic levels. Oikos 123:1157–1172

    Article  Google Scholar 

  • Doretto A, Piano E, Larson CE (2020) The River Continuum Concept: lessons from the past and perspectives for the future. Can J Fish Aquat Sci 77:1853–1864

    Article  Google Scholar 

  • Dossena M, Yvon-Durocher G, Grey J, Montoya JM, Perkins DM, Trimmer M, Woodward G (2012) Warming alters community size structure and ecosystem functioning. Proc R Soc B 279:3011–3019

    Article  PubMed  PubMed Central  Google Scholar 

  • Eggert SL, Wallace JB, Meyer JL, Webster JR (2020) Trophic basis of production of stream detritivores shifts with reduced forest inputs. Hydrobiologia 847:3091–3101

    Article  Google Scholar 

  • Ehnes RB, Pollierer MM, Erdmann G, Klarner B, Eitzinger B, Digel C, Ott D, Maraun M, Scheu S, Brose U (2014) Lack of energetic equivalence in forest soil invertebrates. Ecology 95:527–537

    Article  PubMed  Google Scholar 

  • Elser J (2006) Biological stoichiometry: a chemical bridge between ecosystem ecology and evolutionary biology. Am Nat 168:25–35

    Article  Google Scholar 

  • Elser JJ, Sterner RW, Gorokhova EA, Fagan WF, Markow TA, Cotner JB, Harrison JF, Hobbie SE, Odell GM, Weider LW (2000) Biological stoichiometry from genes to ecosystems. Ecol Let 3:540–550

    Article  Google Scholar 

  • Elser JJ, Watts T, Bitler B, Markovw TA (2006) Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila. Funct Ecol 20:846–856

    Article  Google Scholar 

  • Elser JJ, Kyle M, Learned J, McCrackin ML, Peace A, Steger L (2016) Life on the stoichiometric knife-edge: effects of high and low food C: P ratio on growth, feeding, and respiration in three Daphnia species. Inland Waters 6:136–146

    Article  CAS  Google Scholar 

  • Fagan WF, Siemann E, Mitter C, Denno RF, Huberty AF, Woods HA, Elser JJ (2002) Nitrogen in insects: implications for trophic complexity and species diversification. Am Nat 160:784–802

    Article  PubMed  Google Scholar 

  • Fenolio DB, Graening GO, Collier BA, Stout JF (2006) Coprophagy in a cave-adapted salamander; the importance of bat guano examined through nutritional and stable isotope analyses. Proc R Soc B 273:439–443

    Article  CAS  PubMed  Google Scholar 

  • Foulquier A, Simon L, Gilbert F, Fourel F, Malard F, Mermillon-Blondin F (2010) Relative influences of DOC flux and subterranean fauna on microbial abundance and activity in aquifer sediments: new insights from 13C-tracer experiments. Fresh Biol 55:1560–1576

    Article  CAS  Google Scholar 

  • Fox SE, Teichberg M, Olsen YS, Heffner L, Valiela I (2009) Restructuring of benthic communities in eutrophic estuaries: lower abundance of prey leads to trophic shifts from omnivory to grazing. Mar Ecol Prog Ser 380:43–57

    Article  CAS  Google Scholar 

  • Francois CM, Duret L, Simon L, Mermillod-Blondin F, Malard F, Konecny-Dupré L, Planel R, Penel S, Douady CJ, Lefébure T (2016a) No evidence that nitrogen limitation influences the elemental composition of isopod transcriptomes and proteomes. Mol Biol Evol 33:2605–2620

    Article  CAS  PubMed  Google Scholar 

  • Francois CM, Mermillod-Blondin F, Malard F, Fourel F, Lécuyer C, Douady CJ, Simon L (2016b) Trophic ecology of groundwater species reveals specialization in a low-productivity environment. Funct Ecol 30:262–273

    Article  Google Scholar 

  • Francois CM, Simon L, Malard F, Lefébure T, Douady CJ, Mermillod-Blondin F (2020) Trophic selectivity in aquatic isopods increases with the availability of resources. Funct Ecol 34:1078–1090

    Article  Google Scholar 

  • Frost PC, Stelzer RS, Lamberti GA, Elser J (2002) Ecological stoichiometry of trophic interactions in the benthos: understanding the role of C: N: P ratios in lentic and lotic habitats. Fresh Sci 21:515–528

    Google Scholar 

  • Frost PC, Cross WF, Benstead JP (2005) Ecological stoichiometry in freshwater benthic ecosystems: an introduction. Fresh Biol 50:1781–1785

    Article  CAS  Google Scholar 

  • Frost PC, Benstead JP, Cross WF, Hillebrand H, Larson JH, Xenopoulos MA, Yoshida T (2006) Threshold elemental ratios of carbon and phosphorus in aquatic consumers. Ecol Let 9:774–779

    Article  Google Scholar 

  • Galas J, Bednarz T, Dumnicka E, Starzecka A, Wojtan K (1996) Litter decomposition in a mountain cave water. Arch Hydrobiol 138:199–211

    Article  CAS  Google Scholar 

  • Gessner MO, Gulis V, Kuehn KA, Chauvet E, Suberkropp K (2007) 17 fungal decomposers of plant litter in aquatic ecosystems. Environ Microb Relat 4:301

    Google Scholar 

  • Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52:473–481

    Article  Google Scholar 

  • Greenwood JL, Rosemond AD, Wallace JB, Cross WF, Weyers HS (2007) Nutrients stimulate leaf breakdown rates and detritivore biomass: bottom-up effects via heterotrophic pathways. Oecologia 151:637–649

    Article  PubMed  Google Scholar 

  • Gulis V, Kuehn KA, Schoettle LN, Leach D, Benstead JP, Rosemond AD (2017) Changes in nutrient stoichiometry, elemental homeostasis and growth rate of aquatic litter-associated fungi in response to inorganic nutrient supply. ISME J 11:2729–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo F, Bunn SE, Brett MT, Kainz MJ (2017) Polyunsaturated fatty acids in stream food webs–high dissimilarity among producers and consumers. Fresh Biol 62:1325–1334

    Article  CAS  Google Scholar 

  • Güsewell S, Gessner MO (2009) N: P ratios influence litter decomposition and colonization by fungi and bacteria in microcosms. Funct Ecol 23:211–219

    Article  Google Scholar 

  • Halvorson HM, White G, Scott JT, Evans-White MA (2016) Dietary and taxonomic controls on incorporation of microbial carbon and phosphorus by detritivorous caddisflies. Oecologia 180:567–579

    Article  PubMed  Google Scholar 

  • Halvorson HM, Sperfeld E, Evans-White MA (2017) Quantity and quality limit detritivore growth: mechanisms revealed by ecological stoichiometry and co-limitation theory. Ecology 98:2995–3002

    Article  PubMed  Google Scholar 

  • Hervant F, Renault D (2002) Long-term fasting and realimentation in hypogean and epigean isopods: a proposed adaptive strategy for groundwater organisms. J Exp Biol 205:2079–2087

    Article  CAS  PubMed  Google Scholar 

  • Hervant F, Mathieu J, Durand J (2001) Behavioural, physiological and metabolical responses to long-term starvation and refeeding in a blind cave-dwelling (Proteus anguinus) and a surface-dwelling (Euproctus asper) salamander. J Exp Biol 204:269–281

    Article  CAS  PubMed  Google Scholar 

  • Hessen DO, Elser JJ, Sterner RW, Urabe J (2013) Ecological stoichiometry—an elementary approach using basic principles. Limnol Oceanogr 58:2219–2236

    Article  CAS  Google Scholar 

  • Huntsman BM, Venarsky MP, Benstead JP (2011a) Relating carrion breakdown rates to ambient resource level and community structure in four cave stream ecosystems. Fresh Sci 30:882–892

    Google Scholar 

  • Huntsman BM, Venarsky MP, Benstead JP, Huryn AD (2011b) Effects of organic matter availability on the life history and production of a top vertebrate predator (Plethodontidae: Gyrinophilus palleucus) in two cave streams. Fresh Biol 56:1746–1760

    Article  Google Scholar 

  • Hutchins BT, Tovar R, Schwartz BF (2013) New records for stygobionts from the Edwards Aquifer of Central Texas. Speleobiol Notes 5:14–18

    Google Scholar 

  • Hutchins BT, Schwartz BF, Nowlin WH (2014) Morphological and trophic specialization in a subterranean amphipod assemblage. Fresh Biol 59:2447–2461

    Article  Google Scholar 

  • Hutchins BT, Engel AS, Nowlin WH, Schwartz BF (2016) Chemolithoautotrophy supports macroinvertebrate food webs and affects diversity and stability in groundwater communities. Ecology 97:1530–1542

    Article  PubMed  Google Scholar 

  • Jardine TD, Woods R, Marshall J, Fawcett J, Lobegeiger J, Valdez D, Kainz MJ (2015) Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple tracers in individuals. Ecology 96:3257–3269

    Article  PubMed  Google Scholar 

  • Jennings S, Warr KJ (2003) Smaller predator-prey body size ratios in longer food chains. Proc R Soc B 270:1413–1417

    Article  PubMed  PubMed Central  Google Scholar 

  • Kinsey J, Cooney TJ, Simon KS (2007) A comparison of the leaf shredding ability and influence on microbial films of surface and cave forms of Gammarus minus Say. Hydrobiologia 589:199–205

    Article  Google Scholar 

  • Lancaster J, Bradley DC, Hogan A, Waldron S (2005) Intraguild omnivory in predatory stream insects. J Anim Ecol 74:619–629

    Article  Google Scholar 

  • Lauridsen RB, Edwards FK, Bowes MJ, Woodward G, Hildrew AG, Ibbotson AT, Jones JI (2012) Consumer–resource elemental imbalances in a nutrient-rich stream. Fresh Sci 31:408–422

    Article  Google Scholar 

  • Layman CA, Arrington DA, Montana CG, Post DM (2007) Can stable isotope ratios provide quantitative measures of trophic diversity within food webs? Ecology 88:42–48

    Article  PubMed  Google Scholar 

  • Ledger ME, Edwards FK, Brown LE, Milner AM, Woodward G (2011) Impact of simulated drought on ecosystem biomass production: an experimental test in stream mesocosms. Glob Chang Biol 17:2288–2297

    Article  Google Scholar 

  • MacAvoy SE, Braciszewski A, Tengi E, Fong DW (2016) Trophic plasticity among spring vs. cave populations of Gammarus minus: examining functional niches using stable isotopes and C/N ratios. Ecol Res 31:589–595

    Article  CAS  Google Scholar 

  • Manenti R, Melotto A, Guillaume O, Ficetola GF, Lunghi E (2020) Switching from mesopredator to apex predator: how do responses vary in amphibians adapted to cave living? Behav Ecol Sociobiol 74:1–13

    Article  Google Scholar 

  • Manning DW, Rosemond AD, Gulis V, Benstead JP, Kominoski JS, Maerz JC (2016) Convergence of detrital stoichiometry predicts thresholds of nutrient-stimulated breakdown in streams. Ecol Appl 26:1745–1757

    Article  PubMed  Google Scholar 

  • Marcarelli AM, Baxter CV, Mineau MM, Hall RO Jr (2011) Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology 92:1215–1225

    Article  PubMed  Google Scholar 

  • McCann K, Hastings A (1997) Re-evaluating the omnivory-stability relationship in food webs. Proc R Soc B 264:1249–1254

    Article  PubMed Central  Google Scholar 

  • McCann K, Rassmussen JB, Umbanhower J (2005) The dynamics of spatially coupled food webs. Ecol Lett 8:513–523

    Article  CAS  PubMed  Google Scholar 

  • Mermillod-Blondin F, Simon L, Maazouzi C, Foulquier A, Delolme C, Marmonier P (2015) Dynamics of dissolved organic carbon (DOC) through stormwater basins designed for groundwater recharge in urban area: assessment of retention efficiency. Water Res 81:27–37

    Article  CAS  PubMed  Google Scholar 

  • Moldovan OT, Jalzic B, Erichsen E (2004) Adaptation of the mouthparts in some subterranean Cholevinae (Coleoptera, Leiodidae). Natura Croatica 13:1–18

    Google Scholar 

  • Mulder C, Elser JJ (2009) Soil acidity, ecological stoichiometry and allometric scaling in grassland food webs. Glob Chang Biol 15:2730–2738

    Article  PubMed Central  Google Scholar 

  • Mulder C, Boit A, Bonkowski M, de Ruiter PC, Mancinelli G, van der Heijden MG, van Vijnen H, Vonk JA, Rutgers M (2011) A belowground perspective on Dutch agroecosystems: how soil organisms interact to support ecosystem services. Adv Ecol Res 44:277–357

    Article  Google Scholar 

  • Mulder C, Ahrestani FS, Bahn M, Bohan DA, Bonkowski M, Griffiths BS, Guisharnaud RA, Kattje J, Krogh PH, Lavorel S, Lewis OT, Mancinelli G, Naeem S, Peñuelas J, Poorter H, Reich PB, Rossi L, Rusch GM, Sardans J, Wright IJ (2013) Connecting the green and brown worlds: allometric and stoichiometric predictability of above- and below-ground networks. Adv Ecol Res 49:69–175

    Article  Google Scholar 

  • Naito YI, Meleg IN, Robu M, Vlaicu M, Drucker DG, Wißing C, Hofreiter M, Barlow A, Bocherens H (2020) Heavy reliance on plants for Romanian cave bears evidenced by amino acid nitrogen isotope analysis. Sci Rep 10:1–10

    CAS  Google Scholar 

  • Navarro-Barranco C, Tierno-de-Figueroa JM, Guerra-Gracia JM, Sanchez-Tocino L, Garcia-Gomez JC (2013) Feeding habits of amphipods (Crustacea: Malacostraca) from shallow soft bottom communities: comparison between marine caves and open habitats. J Sea Res 78:1–7

    Article  Google Scholar 

  • Navel S, Simon L, Lécuyer C, Fourel F, Mermillon-Blondin F (2011) The shredding activity of gammarids facilitates the processing of organic matter by the subterranean amphipod Niphargus rhenorhodanensis. Fresh Biol 56:481–490

    Article  CAS  Google Scholar 

  • O’Gorman EJ, Zhao L, Pichler DE, Adams G, Friberg N, Rall BC, Seeney A, Zhang H, Reuman DC, Woodward G (2017) Unexpected changes in community size structure in a natural warming experiment. Nat Clim Chang 7:659–663

    Article  Google Scholar 

  • O’Gorman EJ, Petchey OL, Faulkner KJ, Gallo B, Gordon TA, Neto-Cerejeira J, Ólafsson JS, Pichler DE, Thompson MSA, Woodward G (2019) A simple model predicts how warming simplifies wild food webs. Nat Clim Chang 9:611–616

    Article  Google Scholar 

  • Ott D, Rall BC, Brose U (2012) Climate change effects on macrofaunal litter decomposition: the interplay of temperature, body masses and stoichiometry. Philos Trans R Soc Lond B 367:3025–3032

    Article  Google Scholar 

  • Ott D, Digel C, Klarner B, Maraun M, Pollierer M, Rall BC, Scheu S, Seelig S, Brose U (2014) Litter elemental stoichiometry and biomass densities of forest soil invertebrates. Oikos 123:1212–1223

    Article  CAS  Google Scholar 

  • Pacioglu O, Ianovici N, Filimon MN, Sinitean A, Iacob G, Barabas H, Pahomi A, Acs A, Muntean H, Pârvulescu L (2019) The multifaceted effects induced by floods on the macroinvertebrate communities inhabiting a sinking-cave stream. Int J Speleol 48:167–177

    Article  Google Scholar 

  • Pacioglu O, Strungaru ȘA, Ianovici N, Filimon MN, Sinitean A, Iacob G, Barabas H, Acs A, Muntean H, Schulz R, Zubrod JP, Pârvulescu L (2020) Ecophysiological and life-history adaptations of Gammarus balcanicus (Schäferna, 1922) in a sinking-cave stream from Western Carpathians (Romania). Zoology 139:e125754

    Article  Google Scholar 

  • Parzefall J, Trajano E (2010) Behavioral patterns in subterranean fishes. In: Trajano E, Bichuette ME, Kapoor BG (eds) The Biology of subterranean fishes. CRCPress, Boca Raton, pp 83–116

    Google Scholar 

  • Paula CCPD, Bichuette ME, Seleghim MHR (2020) Nutrient availability in tropical caves influences the dynamics of microbial biomass. Microbiol Open 9:e1044

    Article  CAS  Google Scholar 

  • Pauly D, Watson R, Alder J (2005) Global trends in world fisheries: impacts on marine ecosystems and food security. Philos T R Soc B 360:5–12

    Article  Google Scholar 

  • Poulson TL (2001) Adaptations of cave fishes with some comparisons to deep-sea fishes. Environ Biol Fishes 62:345–364

    Article  Google Scholar 

  • Poulson TL, Lavoie KH (2000) The trophic basis of subsurface ecosystems. In: Wilkens B, Culver D, Humphreys WF (eds) Subterranean ecosystems. Elsevier, Amsterdam, pp 231–249

    Google Scholar 

  • Rastorgueff PA, Harmelin-Vivien M, Richard P, Chevaldonné P (2011) Feeding strategies and resource partitioning mitigate the effects of oligotrophy for marine cave mysids. Mar Ecol Prog Ser 440:163–176

    Article  Google Scholar 

  • Ravn NR, Michelsen A, Reboleira AP (2020) Decomposition of organic matter in caves. Front Ecol Evol 8:348

    Article  Google Scholar 

  • Roach KA, Tobler M, Winemiller KO (2011) Hydrogen sulfide, bacteria, and fish: a unique, subterranean food chain. Ecology 92:2056–2062

    Article  PubMed  Google Scholar 

  • Rooney N, McCann K, Gellner G, Moore JC (2006) Structural asymmetry and the stability of diverse food webs. Nature 442:265–269

    Article  CAS  PubMed  Google Scholar 

  • Rosemond AD, Benstead JP, Bumpers PM, Gulis V, Kominoski JS, Manning DW, Suberkropp K, Wallace JB (2015) Experimental nutrient additions accelerate terrestrial carbon loss from stream ecosystems. Science 347:1142–1145

    Article  CAS  PubMed  Google Scholar 

  • Rosi-Marshall EJ, Wallace JB (2002) Invertebrate food webs along a stream resource gradient. Fresh Biol 47:129–141

    Article  Google Scholar 

  • Rowland FE, Bricker KJ, Vanni MJ, González MJ (2015) Light and nutrients regulate energy transfer through benthic and pelagic food chains. Oikos 124:1648–1663

    Article  CAS  Google Scholar 

  • Saccò M, Blyth AJ, Humphreys WF, Kuhl A, Mazumder D, Smith C, Grice K (2019) Elucidating stygofaunal trophic web interactions via isotopic ecology. PLoS ONE 14:e022398

    Article  CAS  Google Scholar 

  • Saccò M, Blyth AJ, Humphreys WF, Cooper SJ, Austin AD, Hyde J, Mazumder D, Hua Q, White NE, Grice K (2020) Refining trophic dynamics through multi-factor Bayesian mixing models: a case study of subterranean beetles. Ecol Evol 10:8815–8826

    Article  PubMed  PubMed Central  Google Scholar 

  • Sârbu SM, Kane TC, Kinkle BK (1996) A chemoautotrophically based cave ecosystem. Science 272:1953–1955

    Article  PubMed  Google Scholar 

  • Sardans J, Rivas-Ubach A, Penuelas J (2012) The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39

    Article  Google Scholar 

  • Schneider K, Kay AD, Fagan WF (2010) Adaptation to a limiting environment: the phosphorus content of terrestrial cave arthropods. Ecol Res 25:565–577

    Article  CAS  Google Scholar 

  • Schneider K, Christman MC, Fagan WF (2011) The influence of resource subsidies on cave invertebrates: results from an ecosystem-level manipulation experiment. Ecology 92:765–776

    Article  PubMed  Google Scholar 

  • Segura AM, Franco-Trecu V, Franco-Fraguas P, Arim M (2015) Gape and energy limitation determine a humped relationship between trophic position and body size. Can J Fish Aquat Sci 72:198–205

    Article  CAS  Google Scholar 

  • Simon KS, Benfield EF (2001) Leaf and wood breakdown in cave streams. Fresh Sci 20:550–563

    Google Scholar 

  • Simon KS, Benfield EF (2002) Ammonium retention and whole-stream metabolism in cave streams. Hydrobiologia 482:31–39

    Article  CAS  Google Scholar 

  • Simon KS, Benfield EF, Macko SA (2003) Food web structure and the role of epilithic biofilms in cave streams. Ecology 84:2395–2406

    Article  Google Scholar 

  • Sket B (1999) The nature of biodiversity in hypogean waters and how it is endangered. Biodivers Conserv 8:1319–1338

    Article  Google Scholar 

  • Snyder MN, Small GE, Pringle CM (2015) Diet switching by omnivorous freshwater shrimp diminishes differences in nutrient recycling rates and body stoichiometry across a food quality gradient. Freshw Biol 60:526–536

    Article  CAS  Google Scholar 

  • Steffan SA, Chikaraishi Y, Horton DR, Ohkouchi N, Singleton ME, Miliczky E, Hogg DB, Jones VP (2013) Trophic hierarchies illuminated via amino acid isotopic analysis. PLoS ONE 8:e76152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stelzer RS, Lamberti GA (2002) Ecological stoichiometry in running waters: periphyton chemical composition and snail growth. Ecology 83:1039–1051

    Article  Google Scholar 

  • Stenroth P, Holmqvist N, Nyström P, Berglund O, Larsson P, Granéli W (2006) Stable isotopes as an indicator of diet in omnivorous crayfish (Pacifastacus leniusculus): the influence of tissue, sample treatment and season. Can J Fish Aquat Sci 63:821–831

    Article  CAS  Google Scholar 

  • Sterner R (1997) Modelling interactions of food quality and quantity in homeostatic consumers. Fresh Biol 38:473–481

    Article  Google Scholar 

  • Sterner RW, Elser JJ (2002) Ecological stoichiometry: the biology of elements from molecules to the biosphere. University Press, Princeton

    Google Scholar 

  • Suberkropp K, Gulis V, Rosemond AD, Benstead JP (2010) Ecosystem and physiological scales of microbial responses to nutrients in a detritus-based stream: results of a 5-year continuous enrichment. Limnol Oceanogr 55:149–160

    Article  Google Scholar 

  • Suzuki-Ohno Y, Kawata M, Urabe J (2012) Optimal feeding under stoichiometric constraints: a model of compensatory feeding with functional response. Oikos 121:569–578

    Article  Google Scholar 

  • Tant CJ, Rosemond AD, Mehring AS, Kuehn KA, Davis JM (2015) The role of aquatic fungi in transformations of organic matter mediated by nutrients. Fresh Biol 60:1354–1363

    Article  CAS  Google Scholar 

  • Tobler M (2008) Divergence in trophic ecology characterizes colonization of extreme habitats. Biol J Linn Soc 95:517–528

    Article  Google Scholar 

  • Torres-Ruiz M, Wehr JD, Perrone AA (2010) Are net-spinning caddisflies what they eat? An investigation using controlled diets and fatty acids. Fresh Sci 29:803–813

    Google Scholar 

  • Trajano E (1997) Food and reproduction of Trichomycterus itacarambiensis, a cave catfish from south-eastern Brazil. J Fish Biol 51:53–63

    CAS  PubMed  Google Scholar 

  • van de Waal DB, Verschoor AM, Verspagen JM, van Donk E, Huisman J (2010) Climate-driven changes in the ecological stoichiometry of aquatic ecosystems. Front Ecol Environ 8:145–152

    Article  Google Scholar 

  • van der Lee G, Vonk JA, Verdonschot RC, Kraak MH, Verdonschot PF, Huisman J (2021) Eutrophication induces shifts in the trophic position of invertebrates in aquatic food webs. Ecology 102:e03275

    Article  PubMed  Google Scholar 

  • Vannote RL, Minshall GW, Cummins KW, Sedell JR, Cushing CE (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Venarsky MP, Huntsman BM (2018) Food webs in caves. In: Moldovan OTA, Kováč L, Stuart H (eds) Cave ecology. Springer, Berlin, pp 309–328

    Chapter  Google Scholar 

  • Venarsky MP, Benstead JP, Huryn AD (2012) Effects of organic matter and season on leaf litter colonisation and breakdown in cave streams. Fresh Biol 57:773–786

    Article  Google Scholar 

  • Venarsky MP, Huntsman BM, Huryn AD, Benstead JP, Kuhajda BR (2014) Quantitative food web analysis supports the energy-limitation hypothesis in cave stream ecosystems. Oecologia 176:859–869

    Article  PubMed  Google Scholar 

  • Venarsky MP, Benstead JP, Huryn AD, Huntsman BM, Edmonds JW, Findlay RH, Wallace JB (2018) Experimental detritus manipulations unite surface and cave stream ecosystems along a common energy gradient. Ecosystems 21:629–642

    Article  CAS  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (1999) Effects of resource limitation on a detrital-based ecosystem. Ecol Monogr 69:409–442

    Article  Google Scholar 

  • Wallace JB, Eggert SL, Meyer JL, Webster JR (2015) Stream invertebrate productivity linked to forest subsidies: 37 stream-years of reference and experimental data. Ecology 96:1213–1228

    Article  PubMed  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1997) A general model for the origin of allometric scaling laws in biology. Science 276:122–126

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm FM, Taylor SJ, Adams GL (2006) Comparison of routine metabolic rates of the stygobite, Gammarus acherondytes (Amphipoda: Gammaridae) and the stygophile, Gammarus troglophilus. Fresh Biol 51:1162–1174

    Article  Google Scholar 

  • Wood PJ, Gunn J, Rundle SD (2008) Response of benthic cave invertebrates to organic pollution events. Aquat Conserv 18:909–922

    Article  Google Scholar 

  • Woodward G, Ebenman B, Emmerson M, Montoya JM, Olesen JM, Valido A, Warren PH (2005) Body size in ecological networks. Trends Ecol Evol 20:402–409

    Article  PubMed  Google Scholar 

  • Woodward G, Perkins DM, Brown LE (2010) Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos Trans R Soc Lond B 365:2093–2106

    Article  Google Scholar 

  • Woodward G, Brown LE, Edwards FK, Hudson LN, Milner AM, Reuman DC, Ledger ME (2012) Climate change impacts in multispecies systems: drought alters food web size structure in a field experiment. Philos Trans R Soc Lond B 367:2990–2997

    Article  Google Scholar 

  • Yoshimura C, Gessner MO, Tockner K, Furumai H (2008) Chemical properties, microbial respiration, and decomposition of coarse and fine particulate organic matter. Fresh Sci 27:664–673

    Google Scholar 

Download references

Acknowledgements

The research was funded by the National Core Program–Romanian Ministry of Research and Innovation Program, project 25 N/2019 BIODIVERS 19270103. We would like to thank three anonymous reviewers who were very helpful in shaping the final version of this article, through their comments, suggestions, and positive feedbacks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavian Pacioglu.

Ethics declarations

Conflict of interest

All co-authors reviewed and agreed the submission of this manuscript to the journal Aquatic Sciences. There is no conflict of interests among the authors of this paper, either of financial or personal nature.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pacioglu, O., Amărioarei, A., Duțu, L.T. et al. The structure and functionality of communities and food webs in streams along the epigean–hypogean continuum: unifying ecological stoichiometry and metabolic theory of ecology. Aquat Sci 83, 63 (2021). https://doi.org/10.1007/s00027-021-00815-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00027-021-00815-6

Keywords

Navigation