Skip to main content

Advertisement

Log in

Phytoplankton community dynamics within peritidal pools associated with living stromatolites at the freshwater–marine interface

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Recently-discovered peritidal stromatolite ecosystems in South Africa form at the interface of freshwater seeps and the ocean intertidal zone, sharing several similarities with both tidal pool and estuarine ecosystems. While the overall ecology of tidal rock pools has been well studied, the dynamics of the phytoplankton assemblage have been comparatively neglected. In addition, there are no studies to date which describe the dynamics of phytoplankton within a habitat associated with stromatolites. The aim of this study was to investigate the coarse-scale phytoplankton community composition of a series of peritidal pools associated with living stromatolites, using a spectral fluorescence analysis tool, in relation to source-specific drivers related to both freshwater and marine forces. Three sites were sampled monthly from January to December 2014. Physico-chemical, biotic and meteorological parameters were recorded to assess some of the factors which might influence the phytoplankton size-fractionation and community composition using a generalised linear modelling approach. Results indicate that fresh or marine pool state, temporal differences associated with season, macronutrients (N and P), and benthic microalgal biomass are important drivers of the phytoplankton assemblages. Specifically, a transition from fresh to marine pool conditions resulted in an increased abundance of smaller phytoplankton size fractions and a shift from Chlorophyta and Cyanophyta to Bacillariophyta and Cryptophyta. Overall, the community was dominated by Chlorophyta and Bacillariophyta. There was consistency between the drivers and composition of the phytoplankton community compared to those from the few other comparable published studies. Furthermore, this study demonstrates a system which is dominated by benthic rather than pelagic microalgae in terms of biomass, thereby supporting the persistence of actively accreting stromatolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JB, Bate GC, O’Callaghan M (1999) Estuarine primary producers. In: Allanson BR, Baird D (eds) Estuaries of South Africa. Cambridge University Press, Cambridge, pp 91–118

    Chapter  Google Scholar 

  • Barlow R, Lamont T, Kyewalyanga M, Sessions H, Morris T (2010) Phytoplankton production and physiological adaptation on the southeastern shelf of the Agulhas ecosystem. Cont Shelf Res 30:1472–1486. doi:10.1016/j.csr.2010.05.007

    Article  Google Scholar 

  • Bate GC, Heelas BV (1975) Studies on the nitrate nutrition of two indigenous Rhodesian grasses. J Appl Ecol 12:941–952. doi:10.2307/2402100

    Article  CAS  Google Scholar 

  • Beckley LE (1985) The fish community of East Cape tidal pools and an assessment of the nursery function of this habitat. S Afr J Zool 20:21–27. doi:10.1080/02541858.1985.11447907

    Article  Google Scholar 

  • Beutler M, Wiltshire KH, Meyer B, Moldaenke C, Lüring C, Meyerhöfer M, Hansen UP, Dau H (2002) A fluorometric method for the differentiation of algal populations in vivo and in situ. Photosynth Res 72:39–53. doi:10.1023/a:1016026607048

    Article  CAS  PubMed  Google Scholar 

  • Burnett WC, Taniguchi M, Oberdorfer J (2001) Measurement and significance of the direct discharge of groundwater into the coastal zone. J Sea Res 46:109–116. doi:10.1016/S1385-1101(01)00075-2

    Article  Google Scholar 

  • Catherine A, Escoffier N, Belhocine A, Nasri AB, Hamlaoui S, Yepremian C, Bernard C, Troussellier M (2012) On the use of the FluoroProbe®, a phytoplankton quantification method based on fluorescence excitation spectra for large-scale surveys of lakes and reservoirs. Water Res 46:1771–1784. doi:10.1016/j.watres.2011.12.056

    Article  CAS  PubMed  Google Scholar 

  • Dayton PK (1971) Competition, disturbance, and community organization: the provision and subsequent utilization of space in a rocky intertidal community. Ecol Monogr 41:351–389. doi:10.2307/1948498

    Article  Google Scholar 

  • Dismukes GC, Klimov VV, Baranov SV, Kozlov YN, DasGupta J, Tyryshkin A (2001) The origin of atmospheric oxygen on Earth: the innovation of oxygenic photosynthesis. Proc Natl Acad Sci U S A 98:2170–2175. doi:10.1073/pnas.061514798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckman JE, Andres MS, Marinelli RL, Bowlin E, Reid RP, Aspden RJ, Paterson DM (2008) Wave and sediment dynamics along a shallow subtidal sandy beach inhabited by modern stromatolites. Geobiology 6:21–32. doi:10.1111/j.1472-4669.2007.00133.x

    Article  CAS  PubMed  Google Scholar 

  • Fisher TR, Harding LW, Stanley DW, Ward LG (1988) Phytoplankton, nutrients, and turbidity in the Chesapeake, Delaware, and Hudson estuaries. Estuar Coast Shelf Sci 27:61–93. doi:10.1016/0272-7714(88)90032-7

    Article  CAS  Google Scholar 

  • Forbes M, Vogwill R, Onton K (2010) A characterisation of the coastal tufa deposits of south–west Western Australia. Sediment Geol 232:52–65. doi:10.1016/j.sedgeo.2010.09.009

    Article  CAS  Google Scholar 

  • Frantz CM, Petryshyn VA, Corsetti FA (2015) Grain trapping by filamentous cyanobacterial and algal mats: implications for stromatolite microfabrics through time. Geobiology 13:409–423. doi:10.1111/gbi.12145

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Pichel F, Al-Horani FA, Farmer JD, Ludwig R, Wade BD (2004) Balance between microbial calcification and metazoan bioerosion in modern stromatolitic oncolites. Geobiology 2:49–57. doi:10.1111/j.1472-4669.2004.00017.x

    Article  CAS  Google Scholar 

  • Gobler CJ, Cullison LA, Koch F, Harder TM, Krause JW (2005) Influence of freshwater flow, ocean exchange, and seasonal cycles on phytoplankton–nutrient dynamics in a temporarily open estuary. Estuar Coast Shelf Sci 65:275–288. doi:10.1016/j.ecss.2005.05.016

    Article  Google Scholar 

  • Häggqvist K, Lindholm T (2015) Phytoplankton communities in rock pools on the Åland Islands, SW Finland—environmental variables, functional groups and strategies. Biodiversity 16:15–26. doi:10.1080/14888386.2015.1008575

    Article  Google Scholar 

  • Huggett J, Griffiths CL (1986) Some relationships between elevation, physico-chemical variables and biota of intertidal rock pools. Mar Ecol Prog Ser 29:189–197. doi:10.3354/meps029189

    Article  Google Scholar 

  • Johannes RE (1980) The ecological significance of the submarine discharge of groundwater. Mar Ecol Prog Ser 3:365–373. doi:10.3354/meps003365

    Article  Google Scholar 

  • Johnson MP (2000) Physical control of plankton population abundance and dynamics in intertidal rock pools. Hydrobiologia 440:145–152. doi:10.1023/a:1004106808213

    Article  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Kotsedi D, Adams JB, Snow GC (2012) The response of microalgal biomass and community composition to environmental factors in the Sundays Estuary. Water SA 38:177–190. doi:10.4314/wsa.v38i2.3

    Article  CAS  Google Scholar 

  • Krück NC, Chargulaf CA, Saint-Paul U, Tibbetts IR (2009) Early post-settlement habitat and diet shifts and the nursery function of tidepools during Sillago spp. recruitment in Moreton Bay, Australia. Mar Ecol Prog Ser 384:207–219. doi:10.3354/meps07992

    Article  Google Scholar 

  • Lemley DA, Adams JB, Taljaard S, Strydom NA (2015) Towards the classification of eutrophic condition in estuaries. Estuar Coast Shelf Sci 164:221–232. doi:10.1016/j.ecss.2015.07.033

    Article  CAS  Google Scholar 

  • Martins GM, Hawkins SJ, Thompson RC, Jenkins SR (2007) Community structure and functioning in intertidal rock pools: effects of pool size and shore height at different successional stages. Mar Ecol Prog Ser 329:43–55. doi:10.3354/meps329043

    Article  Google Scholar 

  • Mata SA, Bottjer DJ (2012) Microbes and mass extinctions: paleoenvironmental distribution of microbialites during times of biotic crisis. Geobiology 10:3–24. doi:10.1111/j.1472-4669.2011.00305.x

    Article  CAS  PubMed  Google Scholar 

  • Menge BA (2000) Top-down and bottom-up community regulation in marine rocky intertidal habitats. J Exp Mar Biol Ecol 250:257–289. doi:10.1016/S0022-0981(00)00200-8

    Article  CAS  PubMed  Google Scholar 

  • Metaxas A, Scheibling RE (1993) Community structure and organization of tidepools. Mar Ecol Prog Ser 98:187–198. doi:10.3354/meps098187

    Article  Google Scholar 

  • Metaxas A, Scheibling RE (1996) Spatial heterogeneity of phytoplankton assemblages in tidepools: effects of abiotic and biotic factors. Mar Ecol Prog Ser 130:179–199. doi:10.3354/meps130179

    Article  Google Scholar 

  • Mitchell-Innes BA (1988) Changes in phytoplankton populations after an incursion of cold water along the coast at Tsitsikamma Coastal National Park. S Afr J Mar Sci 6:217–226. doi:10.2989/025776188784480483

    Article  Google Scholar 

  • Naselli-Flores L, Barone R (2012) Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698:147–159. doi:10.1007/s10750-012-1059-3

    Article  CAS  Google Scholar 

  • Nielsen KJ (2001) Bottom-up and top-down forces in tide pools: test of a food chain model in an intertidal community. Ecol Monogr 71:187–217. doi:10.2307/2657216

    Article  Google Scholar 

  • Nozais C, Perissinotto R, Mundree S (2001) Annual cycle of microalgal biomass in a South African temporarily-open estuary: nutrient versus light limitation. Mar Ecol Prog Ser 223:39–48. doi:10.3354/meps223039

    Article  Google Scholar 

  • Paine RT (1974) Intertidal community structure. Oecologia 15:93–120. doi:10.1007/bf00345739

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual of chemical and biological methods for seawater analysis. Pergamon Press, New York

    Google Scholar 

  • Perissinotto R, Nozais C, Kibirige I (2002) Spatio-temporal dynamics of phytoplankton and microphytobenthos in a South African temporarily-open estuary. Estuar Coast Shelf Sci 55:47–58. doi:10.1006/ecss.2001.0885

    Article  CAS  Google Scholar 

  • Perissinotto R, Bornman T, Steyn P-P, Miranda NAF, Dorrington RA, Matcher GF, Strydom N, Peer N (2014) Tufa stromatolite ecosystems on the South African south coast. S Afr J Sci 110:89–96. doi:10.1590/sajs.2014/20140011

    Article  Google Scholar 

  • Pfister CA (2007) Intertidal invertebrates locally enhance primary production. Ecology 88:1647–1653. doi:10.1890/06-1913.1

    Article  PubMed  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406:989–992. doi:10.1038/35023158

    Article  CAS  PubMed  Google Scholar 

  • Riding R (2000) Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47:179–214. doi:10.1046/j.1365-3091.2000.00003.x

    Article  CAS  Google Scholar 

  • Riding R (2006) Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time. Sediment Geol 185:229–238. doi:10.1016/j.sedgeo.2005.12.015

    Article  Google Scholar 

  • Riding R (2012) A hard life for cyanobacteria. Science 336:427–428. doi:10.1126/science.1221055

    Article  CAS  PubMed  Google Scholar 

  • Rishworth GM, van Elden S, Perissinotto R, Miranda NAF, Steyn P-P, Bornman TG (2016) Environmental influences on living marine stromatolites: insights from benthic microalgal communities. Environ Microbiol 18:503–513. doi:10.1111/1462-2920.13116

    Article  CAS  PubMed  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86. doi:10.1016/j.jhydrol.2004.02.018

    Article  CAS  Google Scholar 

  • Smith AM, Uken R (2003) Living marine stromatolites at Kei River mouth. S Afr J Sci 99:200

    Google Scholar 

  • Smith AM, Andrews JE, Uken R, Thackeray Z, Perissinotto R, Leuci R, Marca-Bell A (2011) Rock pool tufa stromatolites on a modern South African wave-cut platform: partial analogues for Archaean stromatolites? Terra Nova 23:375–381. doi:10.1111/j.1365-3121.2011.01022.x

    Article  CAS  Google Scholar 

  • Steneck RS, Miller TE, Reid RP, Macintyre IG (1998) Ecological controls on stromatolite development in a modern reef environment: a test of the ecological refuge paradigm. Carbonates Evaporites 13:48–65. doi:10.1007/bf03175434

    Article  Google Scholar 

  • Strickland JDH, Parson TR (1972) A practical handbook of seawater analysis. Bulletin 167, Fisheries Research Board of Canada, Ottawa

  • Thomas CM, Perissinotto R, Kibirige I (2005) Phytoplankton biomass and size structure in two South African eutrophic, temporarily open/closed estuaries. Estuar Coast Shelf Sci 65:223–238. doi:10.1016/j.ecss.2005.05.015

    Article  Google Scholar 

  • Wang Y, Naumann U, Wright ST, Warton DI (2012) mvabund—an R package for model-based analysis of multivariate abundance data. Methods Ecol Evol 3:471–474. doi:10.1111/j.2041-210X.2012.00190.x

    Article  Google Scholar 

  • Warton DI, Foster SD, De’ath G, Stoklosa J, Dunstan PK (2015) Model-based thinking for community ecology. Plant Ecol 216:669–682. doi:10.1007/s11258-014-0366-3

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New York

    Book  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the numerous assistants who helped in the field and laboratory. This research is funded by the South African Research Chairs Initiative (SARChI) of the Department of Science and Technology (DST) and the National Research Foundation (NRF) of South Africa, who also provided a bursary to GMR. Any opinion, finding, conclusion or recommendation expressed in this material is that of the authors and the NRF does not accept any liability in this regard.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gavin M. Rishworth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rishworth, G.M., Perissinotto, R., Miranda, N.A.F. et al. Phytoplankton community dynamics within peritidal pools associated with living stromatolites at the freshwater–marine interface. Aquat Sci 79, 357–370 (2017). https://doi.org/10.1007/s00027-016-0502-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-016-0502-3

Keywords

Navigation