Skip to main content

Advertisement

Log in

Reactivity of dissolved organic matter in response to acid deposition

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Fluvial export of organic matter from the terrestrial catchment to the aquatic system is a large and increasing carbon flux. The successful reduction in sulfuric acid deposition since the 1980s has been shown to enhance the mobility of organic matter in the soil, with more terrestrially derived dissolved organic matter (DOM) reaching aquatic systems. Changes in soil acidity also affect the quality of the DOM. In this study we explore the consequences this may have on the reactivity and turnover of the terrestrially derived DOM as it reaches the aquatic system. DOM of different quality (estimated by absorbance, fluorescence and size exclusion chromatography) was produced through extraction of boreal forest O-horizon soils from podzol at two sulfuric acid concentrations corresponding to natural throughfall in spruce forest in Southern Sweden around 1980 and today. Extraction was done using two different methods, i.e. field leaching and laboratory extraction. The DOM extracts were used to assess if differences in acidity generate DOM of different reactivity. Three reactivity experiments were performed: photodegradation by UV exposure, biodegradation by bacteria, and biodegradation after UV exposure. Reactivity was assessed by measuring loss of dissolved organic carbon and absorbance, change in fluorescence and molecular weight, and bacterial production. DOM extracted at lower sulfuric acid concentration was more susceptible to photooxidation, and less susceptible to bacterial degradation, than DOM extracted at a higher sulfuric acid concentration. Thus the relative importance of these two turnover processes may be altered with changes in acid deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ågren A, Berggren M, Laudon H, Jansson M (2008) Terrestrial export of highly bioavailable carbon from small boreal catchments in spring floods. Freshw Biol 53:964–972

    Article  Google Scholar 

  • Algesten G, Sobek S, Bergström AK et al (2003) Role of lakes for organic carbon cycling in the boreal zone. Glob Change Biol 10:141–147

    Article  Google Scholar 

  • Amon RMW, Benner R (1996) Bacterial utilization of different size classes of dissolved organic matter. Limnol Oceanogr 41:41–51

    Article  CAS  Google Scholar 

  • Andreasson F, Bergkvist B, Bååth E (2009) Bioavailability of DOC in leachates, soil matrix solutions and soil water extracts from beech forest floors. Soil Biol Biochem 41:1652–1658. doi:10.1016/j.soilbio.2009.05.005

    Article  CAS  Google Scholar 

  • Berdén M, Berggren D (1990) Gel filtration chromatography of humic substances in soil solutions using HPLC-determination of the molecular weight distribution. J Soil Sci 41:61–72

    Article  Google Scholar 

  • Berggren D, Mulder J, Westerhof R (1998) Prolonged leaching of mineral forest soils with dilute HCl solutions: the solubility of Al and soil organic matter. Eur J Soil Sci 49:305–316

    Article  CAS  Google Scholar 

  • Berggren M, Laudon H, Jansson M (2007) Landscape regulation of bacterial growth efficiency in boreal freshwaters. Glob Biogeochem Cycle. doi:10.1029/2006gb002844

    Google Scholar 

  • Bertilsson S, Bergh S (1999) Photochemical reactivity of XAD-4 and XAD-8 adsorbable dissolved organic compounds from humic waters. Chemosphere 39:2289–2300

    Article  CAS  Google Scholar 

  • Brinkmann T, Hörsch P, Sartorius D, Frimmel FH (2003a) Photoformation of low-molecular-weight organic acids from brown water dissolved organic matter. Environ Sci Technol 37:4190–4198. doi:10.1021/es0263339

    Article  CAS  PubMed  Google Scholar 

  • Brinkmann T, Sartorius D, Frimmel FH (2003b) Photobleaching of humic rich dissolved organic matter. Aquat Sci 65:415–424. doi:10.1007/s00027-003-0670-9

    Article  CAS  Google Scholar 

  • Clark JM, van der Heijden GMF, Palmer SM et al (2011) Variation in the sensitivity of DOC release between different organic soils following H2SO4 and sea-salt additions. Eur J Soil Sci 62:267–284. doi:10.1111/j.1365-2389.2010.01344.x

    Article  CAS  Google Scholar 

  • Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  • Cory RM, Miller MP, McKnight DM et al (2010) Effect of instrument-specific response on the analysis of fulvic acid fluorescence spectra. Limnol Oceanogr Methods 8:67–78

    Article  CAS  Google Scholar 

  • De Wit HA, Mulder J, Hindar A, Hole L (2007) Long-term increase in dissolved organic carbon in streamwaters in Norway is response to reduced acid deposition. Environ Sci Technol 41:7706–7713

    Article  PubMed  Google Scholar 

  • Ekström SM, Kritzberg ES, Kleja DB et al (2011) Effect of acid deposition on quantity and quality of dissolved organic matter in soil-water. Environ Sci Technol 45:4733–4739. doi:10.1021/es104126f

    Article  PubMed  Google Scholar 

  • Erlandsson M, Buffam I, Fölster J et al (2008) Thirty-five years of synchrony in the organic matter concentrations of Swedish rivers explained by variation in flow and sulphate. Glob Change Biol 14:1191–1198. doi:10.1111/j.1365-2486.2008.01551.x

    Article  Google Scholar 

  • Espinoza LAT, ter Haseborg E, Weber M, Frimmel FH (2009) Investigation of the photocatalytic degradation of brown water natural organic matter by size exclusion chromatography. Appl Catal B Environ 87:56–62. doi:10.1016/j.apcatb.2008.08.013

    Article  Google Scholar 

  • Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71. doi:10.1016/j.envpol.2004.12.031

    Article  CAS  PubMed  Google Scholar 

  • Evans CD, Chapman PJ, Clark JM et al (2006) Alternative explanations for rising dissolved organic carbon export from organic soils. Glob Change Biol 12:2044–2053

    Article  Google Scholar 

  • Evans CD, Jones TG, Burden A et al (2012) Acidity controls on dissolved organic carbon mobility in organic soils. Glob Change Biol 18:3317–3331. doi:10.1111/j.1365-2486.2012.02794.x

    Article  Google Scholar 

  • Fasching C, Battin TJ (2012) Exposure of dissolved organic matter to UV-radiation increases bacterial growth efficiency in a clear-water Alpine stream and its adjacent groundwater. Aquat Sci 74:143–153. doi:10.1007/s00027-011-0205-8

    Article  CAS  Google Scholar 

  • Fröberg M, Berggren D, Bergkvist B et al (2003) Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates. Geoderma 113:311–322. doi:10.1016/s0016-7061(02)00367-1

    Article  Google Scholar 

  • Fröberg M, Kleja DB, Bergkvist B et al (2005) Dissolved organic carbon leaching from a coniferous forest floor—a field manipulation experiment. Biogeochemistry 75:271–287. doi:10.1007/s10533-004-7585-y

    Article  Google Scholar 

  • Helms JR, Mao J, Stubbins A et al (2014) Loss of optical and molecular indicators of terrigenous dissolved organic matter during long-term photobleaching. Aquat Sci 76:353–373. doi:10.1007/s00027-014-0340-0

    Article  CAS  Google Scholar 

  • Hongve D, Riise G, Kristiansen JF (2004) Increased colour and organic acid concentrations in Norwegian forest lakes and drinking water—a result of increased precipitation? Aquat Sci 66:231–238

    Article  CAS  Google Scholar 

  • Jones TG, Evans CD, Jones DL, Hill PW, Freeman C (2015) The impact of mixing contrasting water types on photo-degradation of peat-derived DOC; evidence from a 14C labelling experiment. Aquat Sci (this special issue)

  • Judd KE, Crump BC, Kling GW (2007) Bacterial responses in activity and community composition to photo-oxidation of dissolved organic matter from soil and surface waters. Aquat Sci 69:96–107. doi:10.1007/s00027-006-0908-4

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH et al (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kalbitz K, Schmerwitz J, Schwesig D, Matzner E (2003) Biodegradation of soil-derived dissolved organic matter as related to its properties. Geoderma 113:273–291. doi:10.1016/s0016-7061(02)00365-8

    Article  CAS  Google Scholar 

  • Karlsson KG (2003) A 10 year cloud climatology over Scandinavia derived from NOAA advanced very high resolution radiometer imagery. Int J Climatol 23:1023–1044. doi:10.1002/joc.916

    Article  Google Scholar 

  • Koehler B, von Wachenfeldt E, Kothawala D, Tranvik LJ (2012) Reactivity continuum of dissolved organic carbon decomposition in lake water. J Geophys Res Biogeosci. doi:10.1029/2011jg001793

    Google Scholar 

  • Köhler S, Buffam I, Jonsson A, Bishop K (2002) Photochemical and microbial processing of stream and soilwater dissolved organic matter in a boreal forested catchment in northern Sweden. Aquat Sci 64:269–281

    Article  Google Scholar 

  • Kothawala DN, von Wachenfeldt E, Koehler B, Tranvik LJ (2012) Selective loss and preservation of lake water dissolved organic matter fluorescence during long-term dark incubations. Sci Total Environ 433:238–246. doi:10.1016/j.scitotenv.2012.06.029

    Article  CAS  PubMed  Google Scholar 

  • Kritzberg ES, Ekström SM (2012) Increasing iron concentrations in surface waters—a factor behind brownification? Biogeosciences 9:1465–1478

    Article  CAS  Google Scholar 

  • Lindell MJ, Graneli W, Tranvik LJ (1995) Enhanced bacterial growth in response to photochemical transformation of dissolved organic matter. Limnol Oceanogr 40:195–199

    Article  Google Scholar 

  • Löfgren S, Aastrup M, Bringmark L et al (2011) Recovery of soil water, groundwater, and streamwater from acidification at the Swedish integrated monitoring catchments. Ambio 40:836–856. doi:10.1007/s13280-011-0207-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu Y, Bauer JE, Canuel EA et al (2013) Photochemical and microbial alterations of dissolved organic matter in temperate headwater streams associated with different land use. J Geophys Res Biogeosci. doi:10.1002/jgrg.20048

    Google Scholar 

  • Mann PJ, Davydova A, Zimov N et al (2012) Controls on the composition and lability of dissolved organic matter in Siberia’s Kolyma River basin. J Geophys Res Biogeosci. doi:10.1029/2011jg001798

    Google Scholar 

  • Marschner B, Kalbitz K (2003) Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113:211–235

    Article  CAS  Google Scholar 

  • McKnight DM, Boyer EW, Westerhoff PK et al (2001) Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol Oceanogr 46:38–48

    Article  CAS  Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD et al (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–541

    Article  CAS  PubMed  Google Scholar 

  • Moody CS, Worrall F, Evans CD, Jones TG (2013) The rate of loss of dissolved organic carbon (DOC) through a catchment. J Hydrol 492:139–150. doi:10.1016/j.jhydrol.2013.03.016

    Article  CAS  Google Scholar 

  • Obernosterer I, Benner R (2004) Competition between biological and photochemical processes in the mineralization of dissolved organic carbon. Limnol Oceanogr 49:117–124

    Article  CAS  Google Scholar 

  • Osburn CL, Morris DP, Thorn KA, Moeller RE (2001) Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry 54:251–278. doi:10.1023/a:1010657428418

    Article  CAS  Google Scholar 

  • Oulehle F, Jones TG, Burden A et al (2013) Soil-solution partitioning of DOC in acid organic soils: results from a UK field acidification and alkalization experiment. Eur J Soil Sci 64:787–796. doi:10.1111/ejss.12089

    Article  CAS  Google Scholar 

  • Peuravuori J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337:133–149

    Article  CAS  Google Scholar 

  • Peuravuori J, Pihlaja K (2004) Preliminary study of lake dissolved organic matter in light of nanoscale supramolecular assembly. Environ Sci Technol 38:5958–5967. doi:10.1021/es040041l

    Article  CAS  PubMed  Google Scholar 

  • SanClements MD, Oelsner GP, McKnight DM et al (2012) New insights into the source of decadal increases of dissolved organic matter in acid-sensitive lakes of the Northeastern United States. Environ Sci Technol 46:3212–3219. doi:10.1021/es204321x

    Article  CAS  PubMed  Google Scholar 

  • Seibert J, Grabs T, Kohler S et al (2009) Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model. Hydrol Earth Syst Sci 13:2287–2297

    Article  CAS  Google Scholar 

  • Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria. Mar Ecol Progress Ser 51:201–213

    Article  CAS  Google Scholar 

  • Stutter MI, Lumsdon DG, Rowland AP (2011) Three representative UK moorland soils show differences in decadal release of dissolved organic carbon in response to environmental change. Biogeosciences 8:3661–3675. doi:10.5194/bg-8-3661-2011

    Article  CAS  Google Scholar 

  • Sulzberger B, Durisch-Kaiser E (2009) Chemical characterization of dissolved organic matter (DOM): a prerequisite for understanding UV-induced changes of DOM absorption properties and bioavailability. Aquat Sci 71:104–126. doi:10.1007/s00027-008-8082-5

    Article  CAS  Google Scholar 

  • Tipping E, Hurley MA (1998) A model of solid-solution interactions in acid organic soils, based on the complexation properties of humic substances. J Soil Sci 39:505–519

    Article  Google Scholar 

  • Tipping E, Woof C (1991) The distribution of humic substances between the solid and aqueous phases of acid organic soils; a description based on humic heterogeneity and charge-dependent sorption equilibria. J Soil Sci 42:437–448

    Article  CAS  Google Scholar 

  • Tranvik LJ, Bertilsson S (2001) Contrasting effects of solar UV radiation on dissolved organic sources for bacterial growth. Ecol Lett 4:458–463

    Article  Google Scholar 

  • Tranvik LJ, Downing JA, Cotner JB et al (2009) Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr 54:2298–2314

    Article  CAS  Google Scholar 

  • Vähätalo AV, Wetzel RG (2008) Long-term photochemical and microbial decomposition of wetland-derived dissolved organic matter with alteration of C-13: C-12 mass ratio. Limnol Oceanogr 53:1387–1392. doi:10.4319/lo.2008.53.4.1387

    Article  Google Scholar 

  • Vaughan PP, Blough NV (1998) Photochemical formation of hydroxyl radical by constituents of natural waters. Environ Sci Technol 32:2947–2953. doi:10.1021/es9710417

    Article  Google Scholar 

  • von Wachenfeldt E, Tranvik LJ (2008) Sedimentation in boreal lakes—the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11:803–814. doi:10.1007/s10021-008-9162-z

    Article  CAS  Google Scholar 

  • Watson RT, Noble IR, Bolin B et al (2000) Land use, land-use change and forestry: a special report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  • Weishaar JL, Aiken GR, Bergamaschi BA et al (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708. doi:10.1021/es030360x

    Article  CAS  PubMed  Google Scholar 

  • Weyhenmeyer GA, Fröberg M, Karltun E et al (2012) Selective decay of terrestrial organic carbon during transport from land to sea. Glob Change Biol 18:349–355. doi:10.1111/j.1365-2486.2011.02544.x

    Article  Google Scholar 

  • Worrall F, Burt TP (2007) Trends in DOC concentration in Great Britain. J Hydrol 346:81–92

    Article  Google Scholar 

  • Zsolnay A (2003) Dissolved organic matter: artefacts, definitions, and functions. Geoderma 113:187–209. doi:10.1016/50016-7061(02)00361-0

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to recognize the valuable input by B. Bergkvist during the planning of the experiment, and A. R. Ismail and E. Larsson for assistance during the SEC analyses. This study received financial support from the Lars Hierta Memorial Foundation (Grant No. F02010-0104) and the Royal Physiographic Society in Lund to S. Ekström, as well as financial support from the Swedish Research Council to E. Kritzberg (2010-4081) and the Swedish Research Council Formas through the Strong Research Environment Managing multiple stressors in the Baltic Sea (217-2010-126). This manuscript has been greatly improved by comments from two anonymous reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emma S. Kritzberg.

Additional information

This article is part of the special issue ‘Carbon Cycling in Aquatic Ecosystems’.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekström, S.M., Sandahl, M., Nilsson, P.A. et al. Reactivity of dissolved organic matter in response to acid deposition. Aquat Sci 78, 463–475 (2016). https://doi.org/10.1007/s00027-015-0453-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-015-0453-0

Keywords

Navigation