Skip to main content
Log in

Crust Macrofracturing as the Evidence of the Last Deglaciation

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Machine learning methods were applied to reconsider the results of several passive seismic experiments in Finland. We created datasets from different stages of the receiver function technique and processed them with one of the basic machine learning algorithms. All the results were obtained uniformly with the k-nearest neighbors algorithm. The first result is the Moho depth map of the region. Another result is the delineation of the near-surface low S-wave velocity layer. There are three such areas in the Northern, Southern, and Central parts of the region. The low S-wave velocity in the Northern and Southern areas can be linked to the geological structure. However, we attribute the central low S-wave velocity area to a large number of water-saturated cracks in the upper 1–5 km of the crust. Analysis of the structure of this area leads us to the conclusion that macrofracturing was caused by the last deglaciation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Code and Data Availability

The source code and data are available for downloading at the link: https://github.com/iperas/paper-fennoscandia-ml.

References

  • Aleshin, I., Kosarev, G., Riznichenko, O., & Sanina, I. (2006). Crustal velocity structure under the RUKSA seismic array (Karelia, Russia). Russian Journal of Earth Sciences, 8, 1–8. https://doi.org/10.2205/2006ES000194

    Article  Google Scholar 

  • Aleshin, I., Vaganova, N., Kosarev, G., & Malygin, I. (2019). The crust properties in fennoscandia resulted from knn-analysis of receiver function inversions (in Russian). Geophysical Research, 20(4), 25–39. https://doi.org/10.21455/gr2019.4-2

    Article  Google Scholar 

  • Alinaghi, A., Bock, G., Kind, R., Hanka, W., Wylegalla, K., TOR, Groups, S.W. (2003). Receiver function analysis of the crust and upper mantle from the North German Basin to the Archaean Baltic Shield. Geophysical Journal International, 155(2), 641–652. https://doi.org/10.1046/j.1365-246X.2003.02075.x

    Article  Google Scholar 

  • Bock, G., Achauer, U., Alinaghi, A., Ansorge, J., Bruneton, M., Friederich, W., & Kissling, E. (2001). Seismic probing of fennoscandian lithosphere. Eos, Transactions American Geophysical Union, 82, 621–621. https://doi.org/10.1029/01EO00356

    Article  Google Scholar 

  • Bruneton, M., Farra, V., & Pedersen, H. A. (2002). Non-linear surface wave phase velocity inversion based on ray theory. Geophysical Journal International, 151(2), 583–596. https://doi.org/10.1046/j.1365-246X.2002.01796.x

    Article  Google Scholar 

  • Chiu, P., Naim, A., Lewis, K., & Bloebaum, C. (2009). The hyper-radial visualisation method for multi-attribute decision-making under uncertainty. International Journal of Product Development, 9(1–3), 4–31.

    Article  Google Scholar 

  • Dricker, I. G., Roecker, S. W., Kosarev, G. L., & Vinnik, L. P. (1996). Shear-wave velocity structure of the crust and upper mantle beneath the kola peninsula. Geophysical Research Letters, 23(23), 3389–3392. https://doi.org/10.1029/96GL03262

    Article  Google Scholar 

  • Fawcett, T. (2006). Introduction to roc analysis. Pattern Recognition Letters, 27, 861–874. https://doi.org/10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  • Frassetto, A., & Thybo, H. (2013). Receiver function analysis of the crust and upper mantle in fennoscandia - isostatic implications. Earth and Planetary Science Letters, 381, 234–246. https://doi.org/10.1016/j.epsl.2013.07.001

    Article  Google Scholar 

  • Grad, M., Czuba, W., Luosto, U., & Zuchniak, M. (1998). Qr factors in the crystalline uppermost crust in Finland from rayleigh surface waves. Geophysica, 34(3), 115–129.

    Google Scholar 

  • Grad, M., & Luosto, U. (1992). Fracturing of the crystalline uppermost crust beneath the sveka profile in central Finland. Geophysica, 28(1–2), 53.

    Google Scholar 

  • Grad, M., & Luosto, U. (1994). Seismic velocities and q-factors in the uppermost crust beneath the sveka profile in Finland. Tectonophysics, 230, 1–18. https://doi.org/10.1016/0040-1951(94)90144-9

    Article  Google Scholar 

  • Grad, M., & Tiira, T. (2012). Moho depth of the European plate from teleseismic receiver functions. Journal of Seismology, 16, 95–105. https://doi.org/10.1007/s10950-011-9251-x

    Article  Google Scholar 

  • Grad, M., Tiira, T., Group, E. W. (2009). The Moho depth map of the European Plate. Geophysical Journal International, 176(1), 279–292. https://doi.org/10.1111/j.1365-246X.2008.03919.x

    Article  Google Scholar 

  • Harris, C., Millman, K., Walt, S., Gommers, R., Virtanen, P., Cournapeau, D., & Oliphant, T. (2020). Array programming with numpy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2

    Article  Google Scholar 

  • Hastie, T., Tibshirani, R., & Friedman, J. (2009). The elements of statistical learning: Data mining, inference, and prediction (2nd ed.). New York: Springer.

    Book  Google Scholar 

  • Horspool, N. A., Savage, M. K., & Bannister, S. (2006). Implications for intraplate volcanism and back-arc deformation in northwestern New Zealand, from joint inversion of receiver functions and surface waves. Geophysical Journal International, 166(3), 1466–1483. https://doi.org/10.1111/j.1365-246X.2006.03016.x

    Article  Google Scholar 

  • Janik, T., Kozlovskaya, E., Heikkinen, P., Yliniemi, J., & Silvennoinen, H. (2009). Evidence for preservation of crustal root beneath the proterozoic lapland-kola orogen (northern fennoscandian shield) derived from p and s wave velocity models of polar and hukka wide-angle reflection and refraction profiles and fire4 reflection transect. Journal of Geophysical Research. https://doi.org/10.1029/2008JB005689

    Article  Google Scholar 

  • Janik, T., Kozlovskaya, E., & Yliniemi, J. (2007). Crust-mantle boundary in the central fennoscandian shield: Constraints from wide-angle p and s wave velocity models and new results of reflection profiling in Finland. Journal of Geophysical Research (Solid Earth), 112, 4302. https://doi.org/10.1029/2006JB004681

    Article  Google Scholar 

  • Kosarev, G., Makeyeva, L., & Vinnik, L. (1987). Inversion of teleseismic p-wave particle motions for crustal structure in Fennoscandia. Physics of the Earth and Planetary Onteriors, 47, 11–24.

    Article  Google Scholar 

  • Kozlovskaya, E., Kosarev, G., Aleshin, I., Riznichenko, O., & Sanina, I. (2008). Structure and composition of the crust and upper mantle of the archean-proterozoic boundary in the Fennoscandian shield obtained by joint inversion of receiver function and surface wave phase velocity of recording of the svekalapko array. Geophysical Journal International, 175, 135–152. https://doi.org/10.1111/j.1365-246X.2008.03876.x

    Article  Google Scholar 

  • Kozlovskaya, E., & Poutanen, M. (2006). (December) Polenet/Lapnet Working Group. POLENET/LAPNET- a multidisciplinary geophysical experiment in northern Fennoscandia during IPY 2007-2008. Agu fall meeting abstracts. 2006, S41A-1311.

  • Lagerbäck, R., & Sundh, M. (2008). Early holocene faulting and paleoseismicity in northern sweden, 836. Uppsala, Sweden: Sveriges geologiska undersökning-Research paper.

  • Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0 - A 1-degree global model of Earth’s Crust. Egu general assembly conference abstracts (pp. EGU2013-2658).

  • Olivieri, M., & Spada, G. (2015). Ice melting and earthquake suppression in Greenland. Polar science, 9(1), 94–106.

    Article  Google Scholar 

  • Pedersen, H., & Campillo, M. (1991). Depth dependance of Q beneath the Baltic Shield inferred from modeling of short period seismograms. Geophysical Research Letters, 18(9), 1755–1758. https://doi.org/10.1029/91GL01693

    Article  Google Scholar 

  • Silvennoinen, H., Kozlovskaya, E., Kissling, E., & Kosarev, G. (2014). A new moho boundary map for the northern Fennoscandian Shield based on combined controlled-source seismic and receiver function data. GeoResJ, S1–2, 19–32. https://doi.org/10.1016/j.grj.2014.03.001

    Article  Google Scholar 

  • Slunga, R. S. (1991). The baltic shield earthquakes. Tectonophysics, 189(1–4), 323–331.

    Article  Google Scholar 

  • Spada, G., Yuen, D., Sabadini, R., & Boschi, E. (1991). Lower-mantle viscosity constrained by seismicity around deglaciated regions. Nature, 351(6321), 53–55.

    Article  Google Scholar 

  • Stroeven, A. P., Hättestrand, C., Kleman, J., Heyman, J., Fabel, D., Fredin, O., et al. (2016). Deglaciation of Fennoscandia. Quaternary Science Reviews, 147, 91–121.

    Article  Google Scholar 

  • Turcotte, D. L., & Schubert, G. (2002). Geodynamics. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Uski, M., Hyvönen, T., Korja, A., & Airo, M.-L. (2003). Focal mechanisms of three earthquakes in Finland and their relation to surface faults. Tectonophysics, 363(1), 141–157. https://doi.org/10.1016/S0040-1951(02)00669-8

    Article  Google Scholar 

  • Uski, M., Tiira, T., Grad, M., & Yliniemi, J. (2011). Crustal seismic structure and depth distribution of earthquakes in the Archean Kuusamo region, Fennoscandian shield. Journal of Geodynamics, 53, 61–80. https://doi.org/10.1016/j.jog.2011.08.005

    Article  Google Scholar 

  • Uski, M., Tiira, T., Grad, M., & Yliniemi, J. (2012). Seismicity and depth of faulting in the archean kuusamo region based on relocation of earthquakes with new velocity models. Egu general assembly conference abstracts (pp. 8096).

  • Vecsey, L., Plomerova, J., Kozlovskaya, E., & Babuska, V. (2007). Shear wave splitting as a diagnostic of variable anisotropic structure of the upper mantle beneath central Fennoscandia. Tectonophysics, 438, 57–77. https://doi.org/10.1016/j.tecto.2007.02.017

    Article  Google Scholar 

  • Vinnik, L., Kozlovskaya, E., Oreshin, S., Kosarev, G., Piiponen, K., & Silvennoinen, H. (2016). The lithosphere, lab, lvz and lehmann discontinuity under central Fennoscandia from receiver functions. Tectonophysics, 667, 189–198. https://doi.org/10.1016/j.tecto.2015.11.024

    Article  Google Scholar 

  • Wu, P., & Johnston, P. (2000). Can deglaciation trigger earthquakes in N. America? Geophysical Research Letters, 27(9), 1323–1326. https://doi.org/10.1029/1999GL011070

    Article  Google Scholar 

  • Yanovskaya, T., Lyskova, E., & Koroleva, T. Y. (2019). Radial anisotropy in the European upper mantle from surface waves. Izvestiya, Physics of the Solid Earth, 55(2), 195–204.

    Article  Google Scholar 

Download references

Acknowledgements

The majority of this work would not be possible without our late colleague Dr. Grigory Kosarev. We also would like to express special appreciation to Dr. Lev Vinnik for the fruitful discussion.

Funding

The authors (Igor Aleshin, Kirill Kholodkov and Ivan Malygin) were supported by the Ministry of Science and Higher Education of the Russian Federation. The author (Elena Kozlovskaya) did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

IA and IM prepared the data and processing scripting. EK performed the interpretation and shaped the conclusion on the results. Together with IA, KK wrote the main manuscript and prepared the visualization. All authors reviewed the manuscript.

Corresponding author

Correspondence to Kirill Kholodkov.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleshin, I., Kholodkov, K., Kozlovskaya, E. et al. Crust Macrofracturing as the Evidence of the Last Deglaciation. Pure Appl. Geophys. 180, 3289–3301 (2023). https://doi.org/10.1007/s00024-023-03334-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-023-03334-7

Keywords

Navigation