Skip to main content
Log in

Curie Point Depth, Geothermal Gradient and Heat-Flow Estimation and Geothermal Anomaly Exploration from Integrated Analysis of Aeromagnetic and Gravity Data on the Sabalan Area, NW Iran

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Prospecting the geothermal resources in northwest of Iran, conducted in 1975, revealed several promising areas and introduced the Sabalan geothermal field as a priority for further studies. The Sabalan Mt., representing the Sabalan geothermal field, is a large stratovolcano which consists of an extensive central edifice built on a probable tectonic horst of underlying intrusive and effusive volcanic rocks. In this study, Curie point depth (CPD), geothermal gradient and heat-flow map were constituted from spectral analysis of the aeromagnetic data for the NW of Iran. The top of the geothermal resource (i.e., the thickness of the overburden) was evaluated by applying the Euler deconvolution method on the residual gravity data. The thickness of the geothermal resource was calculated by subtracting the Euler depths obtained from the CPDs in the geothermal anomalous region. The geothermal anomalous region was defined by the heat-flow value greater than 150 mW/m2. CPDs in the investigated area are found between 8.8 km in the Sabalan geothermal field and 14.1 in the northeast. The results showed that the geothermal gradient is higher than 62 °C/km and the heat-flow is higher than 152 mW/m2 for the geothermal manifestation region; the thickness of the geothermal resource was also estimated to vary between 5.4 and 9.1 km. These results are consistent with the drilling and other geological information. Findings indicate that the CDPs agree with earthquake distribution and the type of thermal spring is related to the depth of the top of the geothermal resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified after Alavi (1994) and Rolland et al. (2011)

Fig. 2

Modified after Azad et al. (2011)

Fig. 3

Modified from Amini (1998)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

(Modified after Noorollahi and Itoi, 2011)

Fig. 15

Similar content being viewed by others

References

  • Aboud, E., Salem, A., & Mekkawi, M. (2011). Curie depth map for Sinai Peninsula, Egypt deduced from the analysis of magnetic data. Tectonophysics, 506(1), 46–54.

    Article  Google Scholar 

  • Alavi, M. (1994). Tectonics of the Zagros orogenic belt of Iran: New data and interpretations. Tectonophysics, 229(3), 211–238.

    Article  Google Scholar 

  • Amini. (1998). Meshkin Shahr geological map in scale of 1/100000. GSI, Iran.

  • Amirpour-asl, A., Ghods, A., Rezaeian, M., & Bahroudi, A. (2010). Depth of Curie temperature isotherm from aeromagnetic spectra in Iran: Tectonic implication, Tectonic crossroads: Evolving Orogens of Eurasia–Africa–Arabia, Ankara, Turkey.

  • Aydin, I., & Oksum, E. (2010). Exponential approach to estimate the Curie-temperature depth. Journal of Geophysics and Engineering, 7, 113–125.

    Article  Google Scholar 

  • Azad, S. S., Dominguez, S., Philip, H., Hessami, K., Forutan, M. R., Zadeh, M. S., et al. (2011). The Zandjan fault system: Morphological and tectonic evidences of a new active fault network in the NW of Iran. Tectonophysics, 506(1), 73–85.

    Article  Google Scholar 

  • Bansal, A., Anand, S., Rajaram, M., Rao, V., & Dimri, V. (2013). Depth to the bottom of magnetic sources (DBMS) from aeromagnetic data of Central India using modified centroid method for fractal distribution of sources. Tectonophysics, 603, 155–161.

    Article  Google Scholar 

  • Bansal, A., Gabriel, G., Dimri, V., & Krawczyk, C. (2011). Estimation of depth to the bottom of magnetic sources by a modified centroid method for fractal distribution of sources: An application to aeromagnetic data in Germany. Geophysics, 76(3), L11–L22.

    Article  Google Scholar 

  • Baroň, I., Kernstocková, M., Faridi, M., Bubík, M., Milovský, R., Melichar, R., et al. (2013). Paleostress analysis of a gigantic gravitational mass movement in active tectonic setting: The Qoshadagh slope failure, Ahar, NW Iran. Tectonophysics, 605, 70–87.

    Article  Google Scholar 

  • Bektaş, Ö. (2013). Thermal structure of the crust in Inner East Anatolia from aeromagnetic and gravity data. Physics of the Earth and Planetary Interiors, 221, 27–37.

    Article  Google Scholar 

  • Bektaş, Ö., Ravat, D., Büyüksaraç, A., Bilim, F., & Ateş, A. (2007). Regional geothermal characterisation of East Anatolia from aeromagnetic, heat flow and gravity data. Pure and Applied Geophysics, 164(5), 975–998.

    Article  Google Scholar 

  • Bhattacharyya, B., & Leu, L. K. (1975). Analysis of magnetic anomalies over Yellowstone National Park: Mapping of Curie point isothermal surface for geothermal reconnaissance. Journal of Geophysical Research, 80(32), 4461–4465.

    Article  Google Scholar 

  • Bhattacharyya, B., & Leu, L. K. (1977). Spectral analysis of gravity and magnetic anomalies due to rectangular prismatic bodies. Geophysics, 42(1), 41–50.

    Article  Google Scholar 

  • Bilim, F., Akay, T., Aydemir, A., & Kosaroglu, S. (2016). Curie point depth, heat-flow and radiogenic heat production deduced from the spectral analysis of the aeromagnetic data for geothermal investigation on the Menderes Massif and the Aegean Region, western Turkey. Geothermics, 60, 44–57.

    Article  Google Scholar 

  • Blakely, R. J. (1988). Curie temperature isotherm analysis and tectonic implications of aeromagnetic data from Nevada. Journal of Geophysical Research: Solid Earth (1978–2012), 93(B10), 11817–11832.

    Article  Google Scholar 

  • Blakely, R. J. (1996). Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Bogie, I., Khosrawi, K., & Talebi, B. (2005). Geological results from the drilling of the Northwest Sabalan geothermal project, Iran. In Proceedings of the world Geothermal Congress, Antalya, Turkey, 1–5 April 2005.

  • Bromley, C., Khosrawi, K., & Talebi, B. (2000). Geophysical exploration of Sabalan geothermal prospects in Iran. In Proceedings of the world Geothermal Congress, Kyushu - Tohoku, Japan, May- June 2010.

  • Chavez, R. (1987). An integrated geophysical study of the geothermal field of Tule Chek, BC, Mexico. Geothermics, 16(5), 529–538.

    Article  Google Scholar 

  • Chen, Z., Mou, L., & Meng, X. (2016). The horizontal boundary and top depth estimates of buried source using gravity data and their applications. Journal of Applied Geophysics, 124, 62–72.

    Article  Google Scholar 

  • Comin-Chiaramonti, P., Meriani, S., Mosca, R., & Sinigoi, S. (1979). On the occurrence of analcime in the northeastern Azerbaijan volcanics (northwestern Iran). Lithos, 12(3), 187–198.

    Article  Google Scholar 

  • Connard, G., Couch, R., & Gemperle, M. (1983). Analysis of aeromagnetic measurements from the Cascade Range in central Oregon. Geophysics, 48(3), 376–390.

    Article  Google Scholar 

  • Didon, J., & Germain, Y. M. (1976). Le Sabalan, Volcan Plio-Quaternaire de l Azerbaidjan oriental (Iran): Etude geologique et petrographique de le difice et de son environment regional. Grenoble: Université de Grenoble.

    Google Scholar 

  • Dolmaz, M., Hisarli, Z., Ustaömer, T., & Orbay, N. (2005). Curie point depths based on spectrum analysis of aeromagnetic data, West Anatolian extensional province, Turkey. Pure and Applied Geophysics, 162(3), 571–590.

    Article  Google Scholar 

  • Finn C. A., & Ravat, D. (2004). Magnetic depth estimates and their potential for constraining crustal composition and heat flow in Antarctica. EOS Transactions American Geophysical Union, Fall Meeting Abstracts, 1 December 2004.

  • Fotouhi, M. (1995). Geothermal development in Sabalan, Iran. In Proceedings of the World Geothermal Congress 1995, Florence, Italy, pp. 191–196.

  • Ghaedrahmati, R., Moradzadeh, A., Fathianpour, N., Lee, S. K., & Porkhial, S. (2013). 3-D inversion of MT data from the Sabalan geothermal field, Ardabil, Iran. Journal of Applied Geophysics, 93, 12–24.

    Article  Google Scholar 

  • Guo, L., Meng, X., Chen, Z., Li, S., & Zheng, Y. (2013). Preferential filtering for gravity anomaly separation. Computers & Geosciences, 51, 247–254.

    Article  Google Scholar 

  • Hsieh, H. H., Chen, C. H., Lin, P. Y., & Yen, H. Y. (2014). Curie point depth from spectral analysis of magnetic data in Taiwan. Journal of Asian Earth Sciences, 90, 26–33.

    Article  Google Scholar 

  • Innocenti, F., Mazzuoli, R., Pasquarè, G., Radicati Di Brozolo, F., & Villari, L. (1982). Tertiary and quaternary volcanism of the Erzurumkars area (Eastern Turkey): Geochronological data and geodynamic evolution. Journal of Volcanology and Geothermal Research, 13(3–4), 223–240.

    Article  Google Scholar 

  • Khalil, M. A., Santos, F. M., & Farzamian, M. (2014). 3D gravity inversion and Euler deconvolution to delineate the hydro-tectonic regime in El-Arish area, northern Sinai Peninsula. Journal of Applied Geophysics, 103, 104–113.

    Article  Google Scholar 

  • Khojamli, A., Ardejani, F. D., Moradzadeh, A., Kalate, A. N., Kahoo, A. R., & Porkhial, S. (2016). Estimation of Curie point depths and heat flow from Ardebil province, Iran, using aeromagnetic data. Arabian Journal of Geosciences, 9(5), 1–11.

    Article  Google Scholar 

  • Khojamli, A., Doulati Ardejani, F., Moradzadeh, A., Nejati Kalateh, A., Roshandel Kahoo, A., & Porkhial, S. (2015). Determining fractal parameter and depth of magnetic sources for ardabil geothermal area using aeromagnetic data by de-fractal approach. Journal of Mining and Environment. doi:10.22044/jme.2015.481 (In press).

  • Kıyak, A., Karavul, C., Gülen, L., Pekşen, E., & Kılıç, A. R. (2015). Assessment of geothermal energy potential by geophysical methods: Nevşehir Region, Central Anatolia. Journal of Volcanology and Geothermal Research, 295, 55–64.

    Article  Google Scholar 

  • KML. (1998). Sabalan geothermal project, stage 1-surface exploration, final exploration report. Report number. 2505-RPT-GE-003.

  • Li, Y., & Oldenburg, D. W. (1998). Separation of regional and residual magnetic field data. Geophysics, 63(2), 431–439.

    Article  Google Scholar 

  • Maden, N. (2010). Curie-point depth from spectral analysis of magnetic data in Erciyes stratovolcano (Central Turkey). Pure and Applied Geophysics, 167(3), 349–358.

    Article  Google Scholar 

  • Maus, S., & Dimri, V. (1996). Depth estimation from the scaling power spectrum of potential fields. Geophysical Journal International, 124(1), 113–120.

    Article  Google Scholar 

  • Maus, S., Gordon, D., & Fairhead, D. (1997). Curie-temperature depth estimation using a self-similar magnetization model. Geophysical Journal International, 129(1), 163–168.

    Article  Google Scholar 

  • Moghaddam, M. K., Samadzadegan, F., Noorollahi, Y., Sharifi, M. A., & Itoi, R. (2014). Spatial analysis and multi-criteria decision making for regional-scale geothermal favorability map. Geothermics, 50, 189–201.

    Article  Google Scholar 

  • Mousavi, Z., Darvishzadeh, A., Ghalamghas, J., & Abedini, M. V. (2011). Discussion on stratigraphy questions at Sabalan volcano and Sabalan geothermal exploration project, Meshkinshahr, Iran. GRC Transactions, 35, 931–934.

    Google Scholar 

  • Nabi, E., & Abd, S. H. (2012). Curie point depth beneath the Barramiya-Red Sea coast area estimated from spectral analysis of aeromagnetic data. Journal of Asian Earth Sciences, 43(1), 254–266.

    Article  Google Scholar 

  • Nagata, T. (1961). Rock magnetism (2nd ed., p. p350). Tokyo: Maruzen.

    Google Scholar 

  • Noorollahi, Y., & Itoi, R. (2011). Production capacity estimation by reservoir numerical simulation of northwest (NW) Sabalan geothermal field, Iran. Energy, 36(7), 4552–4569.

    Article  Google Scholar 

  • Nouraliee, J., Porkhial, S., Mohammadzadeh-Moghaddam, M., Mirzaei, S., Ebrahimi, D., & Rahmani, M. (2015). Investigation of density contrasts and geologic structures of hot springs in the Markazi Province of Iran using the gravity method. Russian Geology and Geophysics, 56(12), 1791–1800.

    Article  Google Scholar 

  • Nwankwo, L. I. (2015). Estimation of depths to the bottom of magnetic sources and ensuing geothermal parameters from aeromagnetic data of Upper Sokoto Basin, Nigeria. Geothermics, 54, 76–81.

    Article  Google Scholar 

  • Nwankwo, L. I., & Shehu, A. T. (2015). Evaluation of Curie-point depths, geothermal gradients and near-surface heat flow from high-resolution aeromagnetic (HRAM) data of the entire Sokoto Basin, Nigeria. Journal of Volcanology and Geothermal Research, 305, 45–55.

    Article  Google Scholar 

  • Obande, G. E., Lawal, K. M., & Ahmed, L. A. (2014). Spectral analysis of aeromagnetic data for geothermal investigation of Wikki Warm Spring, north-east Nigeria. Geothermics, 50, 85–90.

    Article  Google Scholar 

  • Okubo, Y., Graf, R., Hansen, R., Ogawa, K., & Tsu, H. (1985). Curie point depths of the island of Kyushu and surrounding areas, Japan. Geophysics, 50(3), 481–494.

    Article  Google Scholar 

  • Philip, H., Avagyan, A., Karakhanian, A., Ritz, J. F., & Rebai, S. (2001). Estimating slip rates and recurrence intervals for strong earthquakes along an intracontinental fault: example of the Pambak–Sevan–Sunik fault (Armenia). Tectonophysics, 343(3), 205–232.

    Article  Google Scholar 

  • Rao, C. R., Kishore, R., Kumar, V. P., & Babu, B. B. (2011). Delineation of intra crustal horizon in Eastern Dharwar Craton—an aeromagnetic evidence. Journal of Asian Earth Sciences, 40(2), 534–541.

    Article  Google Scholar 

  • Ravat, D., Pignatelli, A., Nicolosi, I., & Chiappini, M. (2007). A study of spectral methods of estimating the depth to the bottom of magnetic sources from near-surface magnetic anomaly data. Geophysical Journal International, 169(2), 421–434.

    Article  Google Scholar 

  • Rebai, S., Philip, H., Dorbath, L., Borissoff, B., Haessler, H., & Cisternas, A. (1993). Active tectonics in the Lesser Caucasus: Coexistence of compressive and extensional structures. Tectonics, 12(5), 1089–1114.

    Article  Google Scholar 

  • Reid, A., Allsop, J., Granser, H., Millett, A., & Somerton, I. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55(1), 80–91.

    Article  Google Scholar 

  • Reid, A. B., Ebbing, J., & Webb, S. J. (2014). Avoidable Euler errors—the use and abuse of Euler deconvolution applied to potential fields. Geophysical Prospecting, 62(5), 1162–1168.

    Article  Google Scholar 

  • Riou, R., Dupuy, C., & Dostal, J. (1981). Geochemistry of coexisting alkaline and calc-alkaline volcanic rocks from northern Azerbaijan (N.W. Iran). Journal of Volcanology and Geothermal Research, 11(2), 253–275.

    Article  Google Scholar 

  • Rolland, Y., Sosson, M., Adamia, S., & Sadradze, N. (2011). Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40 Ar/39 Ar dating. Gondwana Research, 20(4), 798–815.

    Article  Google Scholar 

  • Ross, H. E., Blakely, R. J., & Zoback, M. D. (2006). Testing the use of aeromagnetic data for the determination of Curie depth in California. Geophysics, 71(5), L51–L59.

    Article  Google Scholar 

  • Saibi, H., Aboud, E., & Gottsmann, J. (2015). Curie point depth from spectral analysis of aeromagnetic data for geothermal reconnaissance in Afghanistan. Journal of African Earth Sciences, 111, 92–99.

    Article  Google Scholar 

  • Salem, A., Green, C., Ravat, D., Singh, K. H., East, P., Fairhead, J. D., et al. (2014). Depth to Curie temperature across the central Red Sea from magnetic data using the de-fractal method. Tectonophysics, 624, 75–86.

    Article  Google Scholar 

  • Selim, S. E. I., & Aboud, E. (2014). Application of spectral analysis technique on ground magnetic data to calculate the Curie depth point of the eastern shore of the Gulf of Suez, Egypt. Arabian Journal of Geosciences, 7(5), 1749–1762.

    Article  Google Scholar 

  • Shahbazi Shiran, H. (2013). Petrogenesis of quaternary shoshonitic volcanism in NE Iran (Ardabil): Implication for postcollisional magmatism. Journal of Geological Research, 2013, 11.

    Article  Google Scholar 

  • Shuey, R., Schellinger, D., Tripp, A., & Alley, L. (1977). Curie depth determination from aeromagnetic spectra. Geophysical Journal International, 50(1), 75–101.

    Article  Google Scholar 

  • SKM. (2005). Resource review of the Northwest Sabalan geothermal project. Report submitted to SUNA, Iran.

  • Smith, R., Shuey, R., Pelton, J., & Bailey, J. (1977). Yellowstone hot spot: Contemporary tectonics and crustal properties from earthquake and aeromagnetic data. Journal of Geophysical Research, 82(26), 3665–3676.

    Article  Google Scholar 

  • Spector, A., & Grant, F. (1970). Statistical models for interpreting aeromagnetic data. Geophysics, 35(2), 293–302.

    Article  Google Scholar 

  • Springer, M. (1999). Interpretation of heat-flow density in the Central Andes. Tectonophysics, 306(3), 377–395.

    Article  Google Scholar 

  • Starostenko, V. I., Dolmaz, M. N., Kutas, R. I., Rusakov, O. M., Oksum, E., Hisarli, Z. M., et al. (2014). Thermal structure of the crust in the Black Sea: Comparative analysis of magnetic and heat flow data. Marine Geophysical Research, 35(4), 345–359.

    Article  Google Scholar 

  • Stavrev, P. Y. (1997). Euler deconvolution using differential similarity transformations of gravity or magnetic anomalies. Geophysical Prospecting, 45(2), 207–246.

    Article  Google Scholar 

  • Tanaka, A., Okubo, Y., & Matsubayashi, O. (1999). Curie point depth based on spectrum analysis of the magnetic anomaly data in East and Southeast Asia. Tectonophysics, 306(3), 461–470.

    Article  Google Scholar 

  • Telford, W. M., Geldart, L. P., & Sheriff, R. E. (1990). Applied geophysics,  Cambridge University Press, Cambridge, UK.

    Book  Google Scholar 

  • Thompson, D. (1982). EULDPH: A new technique for making computer-assisted depth estimates from magnetic data. Geophysics, 47(1), 31–37.

    Article  Google Scholar 

  • Trifonova, P., Zhelev, Z., Petrova, T., & Bojadgieva, K. (2009). Curie point depths of Bulgarian territory inferred from geomagnetic observations and its correlation with regional thermal structure and seismicity. Tectonophysics, 473(3), 362–374.

    Article  Google Scholar 

  • Wright, P. M., Ward, S. H., Ross, H. P., & West, R. C. (1985). State-of-the-art geophysical exploration for geothermal resources. Geophysics, 50(12), 2666–2699.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the generosity of Renewable Energy Organization of Iran (SUNA) authorities for providing the gravity and aeromagnetic data used in this study. The authors are also grateful to the Geophysics lab of School of Mining Engineering of University of Tehran for the facilities made available for the research work. The Editor of the Pure and Applied Geophysic Journal, Dr. Hans-Jürgen Götze, Solid Earth Sciences, and an anonymous referee are also appreciated for their constructive and valuable comments which helped to improve the quality of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Afshar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afshar, A., Norouzi, G.H., Moradzadeh, A. et al. Curie Point Depth, Geothermal Gradient and Heat-Flow Estimation and Geothermal Anomaly Exploration from Integrated Analysis of Aeromagnetic and Gravity Data on the Sabalan Area, NW Iran. Pure Appl. Geophys. 174, 1133–1152 (2017). https://doi.org/10.1007/s00024-016-1448-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-016-1448-z

Keywords

Navigation