Skip to main content
Log in

Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion for Three-Dimensional Seismic Structure Around SAFOD

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We incorporate body-wave arrival time and surface-wave dispersion data into a joint inversion for three-dimensional P-wave and S-wave velocity structure of the crust surrounding the site of the San Andreas Fault Observatory at Depth. The contributions of the two data types to the inversion are controlled by the relative weighting of the respective equations. We find that the trade-off between fitting the two data types, controlled by the weighting, defines a clear optimal solution. Varying the weighting away from the optimal point leads to sharp increases in misfit for one data type with only modest reduction in misfit for the other data type. All the acceptable solutions yield structures with similar primary features, but the smaller-scale features change substantially. When there is a lower relative weight on the surface-wave data, it appears that the solution over-fits the body-wave data, leading to a relatively rough V s model, whereas for the optimal weighting, we obtain a relatively smooth model that is able to fit both the body-wave and surface-wave observations adequately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aki, K., A. Christoffersson, and E.S. Husebye (1977). Determination of the three-dimensional structure of the lithosphere, J. Geophys. Res., 82, 277–296.

    Google Scholar 

  • Aki, K., and P. G. Richards (1980). Quantitative Seismology: Theory and Methods, W. H. Freeman, San Francisco, CA, USA.

  • Bache, T. C., W. L. Rodi, and D. G. Harkrider (1978). Crustal structures inferred from Rayleigh-wave signatures of NTS explosions, Bull. Seismol. Soc. Am., 68, 1399–1413.

  • Becken, M., O. Ritter, S. K. Park, P. A. Bedrosian, U. Weckmann, and M. Weber (2008), A deep crustal fluid channel into the San Andreas Fault system near Parkfield, California, Geophys. J. Int. 173, 718–732.

    Google Scholar 

  • Bennington, N., C. Thurber, and S. Roecker (2008), Three-dimensional seismic attenuation structure around the SAFOD site, Parkfield, California, Bull. Seismol. Soc. Am. 98, 2934–2947.

  • Bennington, N., H. Zhang, C. H. Thurber, and Paul A. Bedrosian (in revision), Joint inversion of seismic and magnetotelluric data in the Parkfield region of California using the normalized cross-gradient constraint, Pure App. Geophys.

  • Ben-Zion, Y., and P. Malin (1991), San Andreas fault zone head waves near Parkfield, California. Science 251, 1592–1594.

    Google Scholar 

  • Bleibinhaus, F., J. A. Hole, T. Ryberg, and G. S. Fuis (2007), Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging, J. Geophys. Res. 112, B06315, doi:10.1029/2006JB004611.

  • Bucher, R. L., and R. B. Smith (1971). Crustal structure of the eastern Basin and Range Province and the northern Colorado Plateau from phase velocities of Rayleigh waves, in The Structure and Physical Properties of the Earth’s Crust, Geophys. Monogr. Ser., vol. 14, edited by J. G. Heacock, pp. 59–70, AGU, Washington, D.C.

  • Catchings, R. D., M. J. Rymer, M. R. Goldman, J. A. Hole, R. Huggins and C. Lippus (2002), High-resolution seismic velocities and shallow structure of the San Andreas Fault Zone at Middle Mountain, Parkfield, California, Bull. Seismol. Soc. Am. 92, 2493–2503.

    Google Scholar 

  • Chavarria, J. A., P. Malin, R. D. Catchings, and E. Shalev (2003), A look inside the San Andreas fault at Parkfield through vertical seismic profiling, Science 302, 1746–1748.

    Google Scholar 

  • Du, W.-X., C. H. Thurber, and D. Eberhart-Phillips (2004), Earthquake relocation using cross-correlation time delay estimates verified with the bispectrum method, Bull. Seismol. Soc. Am. 94, 856–866.

    Google Scholar 

  • Eberhart-Phillips, D., and A. J. Michael (1993), Three-dimensional velocity structure, seismicity, and fault structure in the Parkfield region, central CA, J. Geophys. Res. 98, 15,737–15,758.

    Google Scholar 

  • Hole, J. A., R. D. Catchings, K. C. St. Clair, M. J. Rymer, D. A. Okaya, and B. J. Carney (2001), Steep-dip imaging of the shallow San Andreas fault near Parkfield, Science 294, 1513–1515.

  • Hole, J., T. Ryberg, G. Fuis, F. Bleibinhaus, and A. Sharma (2006), Structure of the San Andreas fault zone at SAFOD from a seismic refraction survey, Geophys. Res. Lett. 33, L07312.

  • Hole, J. A., and Zelt, B. C. (1995), 3-D finite-difference reflection traveltimes, Geophys. J. Int. 121, 427–434.

    Google Scholar 

  • Julià, J., C. J. Ammon, R. B. Herrmann, and A. M. Correig (2000), Joint inversion of receiver function and surface wave dispersion observations, Geophys. J. Int. 143, 99–112.

  • Korneev, V. A., R. M. Nadeau, and T. V. McEvilly (2003), Seismological studies at Parkfield IX: Fault-zone imaging using guided wave attenuation, Bull. Seismol. Soc. Am. 93, 1415–1426.

    Google Scholar 

  • Lees, J. M., and P. E. Malin (1990), Tomographic images of P wave velocity variation at Parkfield, California, J. Geophys. Res. 95, 21,793–21,804.

    Google Scholar 

  • Lewis, M. A., and Y. Ben Zion (2010), Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms, Geophys. J. Int. 183, 1579–1595.

    Google Scholar 

  • Li, Y.-G., W. L. Ellsworth, C. H. Thurber, P. Malin, and K. Aki (1997), Fault zone guided waves from explosions in the San Andreas fault at Parkfield and Cienega Valley, California, Bull. Seism. Soc. Am. 87, 210–221.

    Google Scholar 

  • Li, Y.-G., and P.E. Malin (2008), San Andreas Fault damage at SAFOD viewed with fault-guided waves, Geophys. Res. Lett. 35, L08304, doi:10.1029/2007GL032924.

  • Li, Y. G., P. C. Leary, K. Aki, and P. E. Malin (1990), Seismic trapped modes in Oroville and San Andreas fault zones, Science 249, 763–766.

  • Li, Y.-G., J. E. Vidale, and E. S. Cochran (2004), Low-velocity damaged structure of the San Andreas Fault at Parkfield from fault zone trapped waves, Geophys. Res. Lett. 31, L12S06, doi:10.1029/2003GL019044.

  • Michelini, A., and T.V. McEvilly (1991), Seismological studies at Parkfield: I, Simultaneous inversion for velocity structure and hypocenters using cubic B-splines parameterization, Bull. Seism. Soc. Am. 81, 524–552.

    Google Scholar 

  • Maceira, M. and C. J. Ammon (2009). Joint inversion of surface wave velocity and gravity observations and its application to Central Asian basins shear velocity structure, J. Geophys. Res. 114, B02314, doi:10.1029/2007JB005157.

  • Paige, C. C., and M. A. Saunders (1982), LSQR: An algorithm for sparse linear equations and sparse least squares, ACM Trans. Math. Software 8, 43–71.

  • Podvin, P. and I. Lecomte (1991), Finite difference computation of traveltimes in very contrasted velocity models: a massively parallel approach and its associated tools., Geophys. J. Int. 105, 271–284.

    Google Scholar 

  • Roecker, S., C. Thurber, and D. McPhee (2004), Joint inversion of gravity and arrival time data from Parkfield: New constraints on structure and hypocenter locations near the SAFOD drill site, Geophys. Res. Lett. 31, L12S04.

  • Roecker, S., C. Thurber, K. Roberts, and L. Powell (2006), Refining the image of the San Andreas Fault near Parkfield, California using a finite difference travel time computation technique, Tectonophysics 426, doi:10.1016/j.tecto.2006.02.026.

  • Roux, P., K.G. Sabra, P. Gerstoft and W.A. Kuperman (2005), P-waves from cross-correlation of seismic ambient noise, Geophys. Res. Lett. 32, L19303.

  • Roueff A., P. Roux and P. Réfrégier (2009), Wave separation in ambient seismic noise using intrinsic coherence and polarization filtering, Signal Process. 89, 410–421.

  • Roux, P. (2009), Passive seismic imaging with directive ambient noise: Application to surface waves on the San Andreas Fault (SAF) in Parkfield, Geophys. J. Int. 179, 367–373.

    Google Scholar 

  • Roux, P., A. Roueff and M. Wathelet (2011), The San Andreas Fault revisited through seismic noise and surface-wave tomography, Geophys. Res. Lett., 38, L13319.

    Google Scholar 

  • Saito, M. (1988), DISPER80: A subroutine package for the calculation of seismic normal mode solutions, in D. J. Doornbos (ed.), Seismological Algorithms: Computational Methods and Computer Programs, Academic Press, New York, pp. 293–319.

  • Takeuchi, H., and M. Saito (1972), Seismic surface waves, in Methods of Computational Physics, edited by B. A. Bolt, pp. 217–295, Academic, New York.

  • Tanimoto, T. (1991), Waveform inversion for three-dimensional density and S-wave structure, J. Geophys. Res., 96, 8167–8189.

    Google Scholar 

  • Tanimoto, T., S. Ishimaru, and C. Alvizuri (2006), Seasonality of particle motion of microseisms, Geophys. J. Int. 166, 253–266, doi:10.1111/j.1365-246X.2006.02931.x.

    Google Scholar 

  • Thurber, C., S. Roecker, K. Roberts, M. Gold, L. Powell, and K. Rittger (2003), Earthquake locations and three-dimensional fault zone structure along the creeping section of the San Andreas fault near Parkfield, CA: Preparing for SAFOD, Geophys. Res. Lett. 30.

  • Thurber, C., S. Roecker, H. Zhang, S. Baher, and W. Ellsworth (2004), Fine-scale structure of the San Andreas fault zone and location of the SAFOD target earthquakes, Geophys. Res. Lett. 31, L12S02.

    Google Scholar 

  • Unsworth M, and P. Bedrosian (2004) Electrical resistivity at the SAFOD site from magnetotelluric exploration, Geophys. Res. Lett. 31, L12S05, doi:10.1029/2003GL019405.

  • Unsworth M, P. Bedrosian, M. Eisel, G. Egbert, and W. Siripunvaraporn (2000) Along strike variations in the electrical structure of the San Andreas Fault at Parkfield, California, Geophys. Res. Lett. 27, 3021–2024.

    Google Scholar 

  • Unsworth, M. J., P. E. Malin, G. D. Egbert, and J. R. Booker (1997), Internal structure of the San Andreas fault zone at Parkfield, California, Geology 25, 359–362.

    Google Scholar 

  • Vidale, J. (1988), Finite-difference calculation of travel times, Bull. Seis. Soc. Am. 78, 2062–2076.

    Google Scholar 

  • Waldhauser, F., and W. L. Ellsworth (2000). A double-difference earthquake location algorithm: method and application to the northern Hayward Fault, California, Bull. Seism. Soc. Am. 90, 1353–1368.

    Google Scholar 

  • Wu, J., J. A. Hole, and J. A. Snoke (2010), Fault zone structure at depth from differential dispersion of seismic guided waves: evidence for a deep waveguide on the San Andreas Fault, Geophys. J. Int. 182, 343–354.

    Google Scholar 

  • Zhang, H., and C. H. Thurber (2003), Double-difference tomography: The method and its application to the Hayward Fault, California, Bull. Seism. Soc. Am. 93, 1875–1889.

    Google Scholar 

  • Zhang, H., and C. Thurber (2005). Adaptive mesh seismic tomography based on tetrahedral and Voronoi diagrams: Application to Parkfield, California, J. Geophys. Res. 110, B04303.

    Google Scholar 

  • Zhang, H., and C. Thurber (2006). Development and applications of double-difference tomography, Pure App. Geophys. 163, 373–403, doi:10.1007/s00024-005-0021-y.

  • Zhang, H., Y. Liu, C. Thurber, and S. Roecker (2007), Three-dimensional shear-wave splitting tomography in the Parkfield, California Region, Geophys. Res. Lett. 34, L24308. doi:10.1029/2007GL03195.

  • Zhang, H., C. Thurber, and P. Bedrosian (2009), Joint inversion for V p, V s, and V p/V s at SAFOD, Parkfield, California, Geochem. Geophys. Geosyst. 10, Q11002, doi:10.1029/2009GC002709.

  • Zhang, H., C. Thurber, D. Shelly, S. Ide, G. Beroza, and A. Hasegawa (2004), High-resolution subducting slab structure beneath Northern Honshu, Japan, revealed by double-difference tomography, Geology 32, 361–364.

    Google Scholar 

Download references

Acknowledgments

We thank Yehuda Ben-Zion and Antonio Rovelli for organizing the 40th Workshop of the International School of Geophysics on “Properties and Processes of Crustal Fault Zones” in Erice, Sicily, which motivated the present work. We are grateful to two anonymous reviewers for their constructive comments, which we hope have led to substantial improvement of the manuscript. This research presented here was partly supported by the Chinese government’s executive program for exploring the deep interior beneath the Chinese continent (SinoProbe-02), Natural Science Foundation of China under Grant No. 41274055, and Fundamental Research Funds for the Central Universities (WK2080000053). This research was also supported by DE-NA0001523 from the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijiang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Maceira, M., Roux, P. et al. Joint Inversion of Body-Wave Arrival Times and Surface-Wave Dispersion for Three-Dimensional Seismic Structure Around SAFOD. Pure Appl. Geophys. 171, 3013–3022 (2014). https://doi.org/10.1007/s00024-014-0806-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0806-y

Keywords

Navigation