Skip to main content
Log in

Tide−Tsunami Interaction in Columbia River, as Implied by Historical Data and Numerical Simulations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The East Japan tsunami of 11 March 2011 propagated more than 100 km upstream in the Columbia River. Visual analysis of its records along the river suggests that the tsunami propagation was strongly affected by tidal conditions. A numerical model of the lower Columbia River populated with tides and a downstream current was developed. Simulations of the East Japan tsunami propagating up the tidal river reproduced the observed features of tsunami waveform transformation, which did not emerge in simulations of the same wave propagating in a quiescent-state river. This allows us to clearly attribute those features to nonlinear interaction with the tidal river environment. The simulation also points to possible amplification of a tsunami wave crest propagating right after the high tide, previously deduced from the recordings of the 1964 Alaska tsunami in the river.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Burwell, D., Tolkova, E., and Chawla, A. (2007), Diffusion and Dispersion Characterization of a Numerical Tsunami Model, Ocean Modelling 19, 10–30.

  • Jay, D., Giese, B., and Sherwood, C. (1990), Energetic and Sedimentary Processes in the Columbia River Estuary, Progress in Oceanography 25, 157–174.

  • Jay, D. (1991), Green’s Law Revisited: Tidal Long-Wave Propagation in Channels With Strong Topography, J. Geophys. Res. 96(C11), 20585–20598.

  • Jay, D., Some Thoughts on Columbia River Tsunami Propagation, Presented at the Workshop on Tsunami Hydrodynamics in a Large River (Corvallis, OR, USA, 2011). http://www.isec.nacse.org/workshop/2011_orst/Jay.pdf.

  • Kowalik, Z., and Proshutinsky, A. (2010), Tsunami-tide interactions: A Cook Inlet Case Study, Continental Shelf Research 30, 633–642.

  • Kowalik, Z., Proshutinsky, T., and Proshutinsky, A. (2006), Tide-tsunami interactions, Sci. Tsunami Hazards 24, 242–256.

  • Lander, J. F., Lockridge, P. A., and Kozuch, M. J., Tsunamis Affecting the West Coast of the United States, 1806–1992 (U.S. Dept. of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Boulder, CO, USA, 1993).

  • Stoker J.J., Water Waves (Interscience Pub., Inc., New York, NY, USA, 1957).

  • Talke, S., Historical tsunamis on the Columbia River, Presented at the Workshop on Tsunami Hydrodynamics in a Large River (Corvallis, OR, USA, 2011). http://www.isec.nacse.org/workshop/2011_orst/Talke.pdf.

  • Tang, L., Titov, V. V., and Chamberlin, C. D. (2009), Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting, J. Geophys. Res. 114, C12025.

  • Titov, V.V., and Synolakis, C.E. (1998), Numerical Modeling of Tidal Wave Runup, J. Waterway, Port, Coastal and Ocean Engineering 124, 157–171.

  • Wilson, B.W., and Torum, A., Runup Heights of the Major Tsunami on North American Coasts, In The Great Alaska Earthquake of 1964: Oceanography and Coastal Engineering (Committee on the Alaska Earthquake, National Research Council) (National Academy of Sciences, Washington, D.C., USA, 1972a) pp. 158–180.

  • Wilson, B.W., and Torum, A., Effects of the Tsunamis: An Engineering Study, In The Great Alaska Earthquake of 1964: Oceanography and Coastal Engineering (Committee on the Alaska Earthquake, National Research Council) (National Academy of Sciences, Washington, D.C., USA, 1972b) pp. 361–526.

Download references

Acknowledgments

This work was supported by the Joint Institute for the Study of the Atmosphere and Ocean (JISAO, University of Washington) under NOAA Cooperative Agreement No. NA10OAR4320148, Contribution #1889 (JISAO), #3775 (Pacific Marine Environmental Laboratory, NOAA). The study was originally motivated by the Workshop on Tsunami Hydrodynamics in a Large River held at Oregon State University, Corvallis, OR, 15–16 August 2011 (http://www.isec.nacse.org/workshop/2011_orst/agenda.html). Columbia River bathymetry was provided by Dr. Joseph Zhang (Oregon Health and Science University) and Prof. Harry Yeh (Oregon State University) as part of the workshop materials. Beaver tide gauge record is courtesy of the U.S. Geological Survey, Oregon Water Science Center (http://www.or.water.usgs.gov/). Gauge records at other Columbia River locations used in this work have been obtained from the NOAA/NOS/CO-OPS public website (http://www.tidesandcurrents.noaa.gov/). DART record was obtained from NOAA’s National Data Buoy Center public website (http://www.ndbc.noaa.gov/dart.shtml). Sincere thanks to Sandra Bigley (PMEL), Jean Newman (PMEL), and Stewart Allen (Centre for Australian Weather and Climate Research) for language-editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Tolkova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tolkova, E. Tide−Tsunami Interaction in Columbia River, as Implied by Historical Data and Numerical Simulations. Pure Appl. Geophys. 170, 1115–1126 (2013). https://doi.org/10.1007/s00024-012-0518-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-012-0518-0

Keywords

Navigation