Skip to main content
Log in

Einstein-Type Elliptic Systems

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

In this paper, we analyse semi-linear systems of partial differential equations which are motivated by the conformal formulation of the Einstein constraint equations coupled with realistic physical fields on asymptotically Euclidean (AE) manifolds. In particular, electromagnetic fields give rise to this kind of system. In this context, under suitable conditions, we prove a general existence theorem for such systems, and, in particular, under smallness assumptions on the free parameters of the problem, we prove existence of far from CMC (near CMC) Yamabe positive (Yamabe non-positive) solutions for charged dust coupled to the Einstein equations, satisfying a trapped surface condition on the boundary. As a bypass, we prove a Helmholtz decomposition on AE manifolds with boundary, which extends and clarifies previously known results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See [16, Chapter 1] for a detailed derivation of these constraint equations.

  2. In order to achieve this result in the case of manifolds with boundary, one would need to complement the elliptic estimate of [40, Theorem 1.10] with the corresponding estimates on the compact core, which follows along the same lines to that of [10, Proposition 4].

  3. Following [40], the exceptional integers are defined as \(\{z\in {\mathbb {Z}}, z\ne -1,\cdots ,3-n \}\).

  4. Here, we are using [44, Theorem 3.1] and the same observation applied in [38, Theorem 4.1]. That is, the hypotheses of [44, Theorem 3.1] can be weakened so as to suppose \(u\in W^p_{k,loc}\) instead of \(W^p_{k}\).

References

  1. Choquet-Bruhat, Y.: General Relativity and the Einstein Equations. Oxford University Press Inc., New York (2009)

    MATH  Google Scholar 

  2. Ringström, H.: The Cauchy Problem in General Relativity. European Mathematical Society (2009)

  3. Lichnerowicz, A.: L’integration des équations de la gravitation relativiste et le probléme des n corps. J. Math. Pures Appl. 23, 37–63 (1944)

    MathSciNet  MATH  Google Scholar 

  4. York, J.: Gravitational degrees of freedom and the initial-value problem. Phys. Rev. Lett. 26(26), 1656–1658 (1971)

    Article  ADS  MathSciNet  Google Scholar 

  5. York, J.: Role of conformal three-geometry in the dynamics of gravitation. Phys. Rev. Lett. 28(16), 1082–1085 (1972)

    Article  ADS  Google Scholar 

  6. Isenberg, J.: Constant mean curvature solution of the Einstein constraint equations on closed manifold. Class. Quantum Gravity 12, 2249–2274 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Choquet-Bruhat, Y., Isenberg, J., Pollack, D.: The constraint equations for the Einstein-scalar field system on compact manifolds. Class. Quantum Gravity 24, 809 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Maxwell, D.: Rough solutions to the Einstein constraint equations on compact manifolds. J. Hyperbolic Differ. Equ. 2(2), 521–546 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Holst, M., Tsogtgerel, G.: The Lichnerowicz equation on compact manifolds with boundary. Class. Quantum Gravity 30, 205011 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Maxwell, D.: Solutions of the Einstein constraint equations with apparent horizon boundaries. Commun. Math. Phys. 253, 561–583 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Chruściel, P.T., Mazzeo, R.: Initial data sets with ends of cylindrical type: I. The Lichnerowicz equation. Ann. Henri Poincaré 16, 1231–1266 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Albanese, G., Rigoli, M.: Lichnerowicz-type equations on complete manifolds. Adv. Nonlinear Anal. 5(3), 223–250 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Albanese, G., Rigoli, M.: Lichnerowicz-type equations with sign-changing nonlinearities on complete manifolds with boundary. J. Differ. Equ. 263(11), 7475–7495 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Isenberg, J., Moncrief, V.: A set of nonconstant mean curvature solutions of the Einstein constraint equations on closed manifolds. Class. Quantum Gravity 13, 1819 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Choquet-Bruhat, Y., Isenberg, J., York, J.W., Jr.: Einstein constraints on asymptotically Euclidean manifolds. Phys. Rev. D 61, 084034 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Avalos, R., Lira, J.H.: The Einstein Constraint Equations. Editora do IMPA, Rio de Janeiro (2021)

  17. Holst, M., Nagy, G., Tsogtgerel, G.: Rough solutions of the Einstein constraints on closed manifolds without near-CMC conditions. Commun. Math. Phys. 288, 547 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Maxwell, D.: A class of solutions of the vacuum Einstein constraint equations with freely specified mean curvature. Math. Res. Lett. 16(4), 627–645 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Dilts, J., Isenberg, J., Mazzeo, R., Meier, C.: Non-CMC solutions of the Einstein constraint equations on asymptotically Euclidean manifolds. Class. Quantum Gravity 31, 065001 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Holst, M., Meier, C.: Non-CMC solutions to the Einstein constraint equations on asymptotically Euclidean manifolds with apparent horizon boundaries. Class. Quantum Gravity 32, 025006 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Dahl, M., Gicquaud, R., Humbert, E.: A limit equation associated to the solvability of the vacuum Einstein constraint equations by using the conformal method. Duke Math. J. 161(14), 2669–2697 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gicquaud, R., Sakovich, A.: A Large class of non-constant mean curvature solutions of the Einstein constraint equations on an asymptotically hyperbolic manifold. Commun. Math. Phys. 310, 705–763 (2012)

  23. Gicquaud, R., Ngô, Q.A.: A new point of view on the solutions to the Einstein constraint equations with arbitrary mean curvature and small TT-tensor. Class. Quantum Gravity 31(19), 195014 (2014)

    Article  ADS  MATH  Google Scholar 

  24. Nguyen, C.: Applications of fixed point theorems to the vacuum Einstein constraint equations with non-constant mean curvature. Ann. Henri Poincaré 17, 2237 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Premoselli, B.: The Einstein-scalar field constraint system in the positive case. Commun. Math. Phys. 326, 543–557 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Vâlcu, C.: The constraint equations in the presence of a scalar field: The case of the conformal method with volumetric drift. Commun. Math. Phys. 373, 525–569 (2020)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Maxwell, D.: Conformal parameterizations of slices of flat Kasner spacetimes. Ann. Henri Poincaré 16, 2919–2954 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Maxwell, D.: A model problem for conformal parameterizations of the Einstein constraint equations. Commun. Math. Phys. 302, 697–736 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Maxwell, D.: Initial Data in General Relativity Described by Expansion, Conformal Deformation and Drift. arXiv:1407.1467. Accepted by Com. Anal. Geom. CAG#1801 (2014)

  30. Isenberg, J., Murchadha, N.O.: Non-CMC conformal data sets which do not produce solutions of the Einstein constraint equations. Class. Quantum Gravity 21, S233 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Walsh, D.M.: Non-uniqueness in conformal formulations of the Einstein constraints. Class. Quantum Gravity 24, 1911–1925 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Baumgarte, T.W., Murchadha, N.O., Pfeiffer, H.P.: Einstein constraints: uniqueness and nonuniqueness in the conformal thin sandwich approach. Phy. Rev. D 75, 044009 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  33. Choquet Bruhat, Y.: Cosmological Yang–Mills hydrodynamics. J. Math. Phys. 33(5), 1782–1785 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Holm, D.: Hamilton techniques for relativistic fluid dynamics and stability theory. In: Anile, A.M., Choquet-Bruhat, Y. (eds.) Relativistic Fluid Dynamics. Springer-Verlag, New York (1987)

    Google Scholar 

  35. Dain, S.: Trapped surfaces as boundaries for the constraint equations. Class. Quantum Gravity 21, 555–73 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Cantor, M.: Elliptic operators and the decomposition of tensor fields. Bull. Am. Math. Soc. 5, 3 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  38. Choquet-Bruhat, Y., Christodoulou, D.: Elliptic systems in \(H_{s,\delta }\) spaces on manifolds which are Euclidean at infinity. Acta Math. 146, 129–150 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  39. McOwen, R.C.: The behaviour of the Laplacian on weighted Sobolev spaces. Commun. Pure Appl. Math. 32, 783–795 (1979)

    Article  MATH  Google Scholar 

  40. Bartnik, R.: The mass of an asymptotically flat manifold. Commun. Pure Appl. Math. 39, 661–693 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  41. Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  42. Grisvard, P.: Elliptic Problems in Non Smooth Domains. Pitman Publishing INC., Marshfield (1985)

    MATH  Google Scholar 

  43. Rudin, W.: Functional Analysis. McGraw-Hill Book Co, Singapore (1991)

    MATH  Google Scholar 

  44. Nirenberg, L., Walker, H.F.: The null spaces of elliptic partial differential operators in \({\mathbb{R}}^n\). J. Math. Anal. Appl. 42, 271–301 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  45. de Figueiredo, D.G., Sirakov, B.: Liouville type theorems, monotonicity results and a priori bounds for positive solutions of elliptic systems. Math. Ann. 333, 231–260 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Souto, M.A.S.: A priori estimates and and existence of positive solutions of nonlinear cooperative elliptic systems. Differ. Int. Equ. 8(5), 1245–1258 (1995)

    MathSciNet  MATH  Google Scholar 

  47. Clkment, P., de Figueiredo, D.G., Mitidieri, E.: Positive solutions of semilinear elliptic systems. In: Costa, D. (ed.) Djairo G. de Figueiredo—Selected Papers. Springer, Cham (1992)

  48. Troy, W.C.: Symmetry properties in systems of semilinear elliptic equations. J. Differ. Equ. 42, 3 (1981)

    Article  MathSciNet  Google Scholar 

  49. Schwarz, G.: Hodge Decomposition—A Method for Solving Boundary Value Problems. Springer-Verlag, Berlin (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Rodrigo Avalos would like to thank CAPES/PNPD and FUNCAP for financial support, and Jorge H. Lira would like to thank CNPq and FUNCAP for financial support. Also, we would like to thank the comments, suggestions and critics made be two anonymous referees which have helped us improve the content and presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Avalos.

Additional information

Communicated by Mihalis Dafermos.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avalos, R., Lira, J.H. Einstein-Type Elliptic Systems. Ann. Henri Poincaré 23, 3221–3264 (2022). https://doi.org/10.1007/s00023-022-01180-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-022-01180-2

Navigation