Skip to main content
Log in

Generalized Wentzell Boundary Conditions and Quantum Field Theory

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We discuss a free scalar field subject to generalized Wentzell boundary conditions. On the classical level, we prove well posedness of the Cauchy problem and in particular causality. Upon quantization, we obtain a field that may naturally be restricted to the boundary. We discuss the holographic relation between this boundary field and the bulk field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ’t Hooft, G.: Dimensional reduction in quantum gravity. (1993), arXiv:gr-qc/9310026

  2. Susskind, L.: The World as a hologram. J. Math. Phys. 36, 6377 (1995). arXiv:hep-th/9409089

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Maldacena, J.M.: The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2, 231 (1998). arXiv:hep-th/9711200

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Witten, E.: Anti-de Sitter space and holography. Adv. Theor. Math. Phys. 2, 253 (1998). arXiv:hep-th/9802150

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Rehren, K.-H.: Algebraic holography. Ann. Henri Poincaré 1, 607 (2000). arXiv:hep-th/9905179

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bertola, M., et al.: A general construction of conformal field theories from scalar Anti-de Sitter quantum field theories. Nucl. Phys. B 587, 619 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Dütsch, M., Rehren, K.-H.: A comment on the dual field in the scalar AdS/CFT correspondence. Lett. Math. Phys. 62, 171 (2002). arXiv:hep-th/0204123

    Article  MathSciNet  MATH  Google Scholar 

  8. Chodos, A., Thorn, C.B.: Making the massless string massive. Nucl. Phys. B 72, 509 (1974)

    Article  ADS  Google Scholar 

  9. Zahn, J.: The excitation spectrum of rotating strings with masses at the ends. JHEP 1312, 047 (2013). arXiv:1310.0253

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Balasubramanian, V., Kraus, P.: A stress tensor for Anti-de Sitter gravity. Commun. Math. Phys. 208, 413 (1999). arXiv:hep-th/9902121

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Skenderis, K.: Lecture notes on holographic renormalization. Class. Quant. Grav. 19, 5849 (2002). arXiv:hep-th/0209067

  12. Symanzik, K.: Schrödinger representation and Casimir Effect in renormalizable quantum field theory. Nucl. Phys. B 190, 1 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  13. Ueno, T.: Wave equation with Wentzell’s boundary condition and a related semigroup on the boundary. I. Proc. Jpn. Acad. 49, 672 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Favini, A., et al.: The heat equation with generalized wentzell boundary condition. J. Evol. Equ. 2, 1 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gal, C.G., Goldstein, G.R., Goldstein, J.A.: Oscillatory boundary conditions for acoustic wave equations. J. Evol. Equ. 3, 623 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Coclite, G.M., et al.: Continuous dependence in hyperbolic problems with Wentzell boundary conditions. Commun. Pure Appl. Anal. 13, 419 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vitillaro, E.: Strong solutions for the wave equation with a kinetic boundary condition. In: Recent trends in nonlinear partial differential equations. I. Evolution problems, Contemporary Mathematics, vol. 594, pp. 295–307. Amererican Mathematics Society Providence, RI (2013)

  18. Vitillaro, E.: On the wave equation with hyperbolic dynamical boundary conditions, interior and boundary damping and source. Arch. Rational Mech. Anal. 223, 1183 (2017), arXiv:1506.00910

  19. Feller, W.: Generalized second order differential operators and their lateral conditions. Ill. J. Math. 1, 459 (1957)

    MathSciNet  MATH  Google Scholar 

  20. Greenberg, O.: Generalized free fields and models of local field theory. Ann. Phys. 16, 158 (1961)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Taylor, M.E.: Partial Differential Equations I. Applied Mathematical Sciences, vol. 115, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  22. Wald, R.M.: General Relativity. University of Chicago Press, Chicago (1984)

    Book  MATH  Google Scholar 

  23. Jost, R.: The General Theory of Quantized Fields. American Mathematical Society, Providence (1965)

    MATH  Google Scholar 

  24. Brunetti, R., Fredenhagen, K.: Microlocal analysis and interacting quantum field theories: renormalization on physical backgrounds. Commun. Math. Phys. 208, 623 (2000). arXiv:math-ph/9903028

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  26. Strohmaier, A., Verch, R., Wollenberg, M.: Microlocal analysis of quantum fields on curved space-times: analytic wavefront sets and Reeh–Schlieder theorems. J. Math. Phys. 43, 5514 (2002). arXiv:math-ph/0202003

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hollands, S., Wald, R.M.: Quantum fields in curved spacetime. Phys. Rept. 574, 1 (2015). arXiv:1401.2026

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Dappiaggi, C., Nosari, G., Pinamonti, N.: The Casimir effect from the point of view of algebraic quantum field theory. Math. Phys. Anal. Geom. 19, 12 (2016). arXiv:1412.1409

    Article  MathSciNet  Google Scholar 

  29. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. I, 2nd edn. Academic Press Inc, New York (1980)

    MATH  Google Scholar 

  30. Boas Jr., R.P.: Entire Functions. Academic Press Inc., New York (1954)

    MATH  Google Scholar 

  31. Haag, R., Schroer, B.: Postulates of quantum field theory. J. Math. Phys. 3, 248 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Leont’ev, A.F.: Values of an entire function of finite order at given points. Izv. Akad. Nauk SSSR Ser. Mat. 22, 387 (1958)

    MathSciNet  Google Scholar 

  33. Buchholz, D., Wichmann, E.H.: Causal independence and the energy level density of states in local quantum field theory. Commun. Math. Phys. 106, 321 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Zahn.

Additional information

Communicated by Karl-Henning Rehren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahn, J. Generalized Wentzell Boundary Conditions and Quantum Field Theory. Ann. Henri Poincaré 19, 163–187 (2018). https://doi.org/10.1007/s00023-017-0629-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-017-0629-3

Navigation