Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Annales Henri Poincaré
  3. Article

Melons are Branched Polymers

  • Published: 15 December 2013
  • Volume 15, pages 2085–2131, (2014)
  • Cite this article
Download PDF
Annales Henri Poincaré Aims and scope Submit manuscript
Melons are Branched Polymers
Download PDF
  • Razvan Gurau1,2 &
  • James P. Ryan3 
  • 413 Accesses

  • 1 Altmetric

  • 1 Mention

  • Explore all metrics

Abstract

Melonic graphs constitute the family of graphs arising at leading order in the 1/N expansion of tensor models. They were shown to lead to a continuum phase, reminiscent of branched polymers. We show here that they are in fact precisely branched polymers, that is, they possess Hausdorff dimension 2 and spectral dimension 4/3.

Article PDF

Download to read the full article text

Similar content being viewed by others

Diagrammatic proof of the large N melonic dominance in the SYK model

Article 12 July 2019

Graph Theoretical and Knot Theoretical Analyses of Multi-cyclic Polymers

Chapter © 2022

Chordal Loewner chains with quasiconformal extensions

Article 28 September 2016

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Graph Theory
  • Polytopes
  • Topology
  • Polymers
  • Dendrimers
  • Combinatorial Geometry
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Gurau, R., Ryan, J.P.: Colored tensor models—a review. SIGMA 8, 020 (2012), (arXiv:1109.4812 [hep-th])

  2. Di Francesco P., Ginsparg P.H., Zinn-Justin J.: 2-D gravity and random matrices. Phys. Rep. 254, 1–133 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  3. Sasakura N.: Tensor model for gravity and orientability of manifold. Mod. Phys. Lett. A 6, 2613 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Ambjorn J., Durhuus B., Jonsson T.: Three-dimensional simplicial quantum gravity and generalized matrix models. Mod. Phys. Lett. A 6, 1133 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  5. Sasakura, N.: Tensor models and 3-ary algebras. J. Math. Phys. 52, 103510 (2011), (arXiv:1104.1463 [hep-th])

    Google Scholar 

  6. Sasakura, N.: Tensor models and hierarchy of n-ary algebras. Int. J. Mod. Phys. A 26, 3249 (2011), (arXiv:1104.5312 [hep-th])

  7. Boulatov, D.V.: A model of three-dimensional lattice gravity. Mod. Phys. Lett. A 7, 1629 (1992), (hep-th/9202074)

  8. Ooguri, H.: Topological lattice models in four-dimensions. Mod. Phys. Lett. A 7, 2799 (1992), (hep-th/9205090)

  9. De Pietri, R., Petronio, C.: Feynman diagrams of generalized matrix models and the associated manifolds in dimension 4. J. Math. Phys. 41, 6671 (2000), (gr-qc/0004045)

    Google Scholar 

  10. De Pietri, R., Freidel, L., Krasnov, K., Rovelli, C.: Barrett–Crane model from a Boulatov–Ooguri field theory over a homogeneous space. Nucl. Phys. B 574, 785 (2000), (hep-th/9907154)

    Google Scholar 

  11. Reisenberger, M.P., Rovelli, C.: Space-time as a Feynman diagram: the connection formulation. Class. Quant. Gravity 18, 121 (2001), (gr-qc/0002095)

    Google Scholar 

  12. Baratin, A., Oriti, D.: Group field theory with non-commutative metric variables. Phys. Rev. Lett. 105, 221302 (2010), (arXiv:1002.4723 [hep-th])

    Google Scholar 

  13. Baratin, A., Oriti, D.: Group field theory and simplicial gravity path integrals: a model for Holst–Plebanski gravity. Phys. Rev. D 85, 044003 (2012), (arXiv:1111.5842 [hep-th])

  14. Rovelli C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Engle, J., Livine, E., Pereira, R., Rovelli,C.: LQG vertex with finite Immirzi parameter. Nucl. Phys. B 799, 136 (2008), (arXiv:0711.0146 [gr-qc])

  16. Freidel, L., Krasnov, K.: A new spin foam model for 4D Gravity. Class. Quant. Gravity 25, 125018 (2008), (arXiv:0708.1595 [gr-qc])

  17. Livine, E.R., Speziale, S.: Consistently solving the simplicity constraints for spinfoam quantum gravity. Europhys. Lett. 81, 50004 (2008), (arXiv:0708.1915 [gr-qc])

    Google Scholar 

  18. Perini, C., Rovelli, C., Speziale, S.: Self-energy and vertex radiative corrections in LQG. Phys. Lett. B 682, 78 (2009), (arXiv:0810.1714 [gr-qc])

  19. Ben Geloun, J., Gurau, R., Rivasseau, V.: EPRL/FK group field theory. Europhys. Lett. 92, 60008 (2010), (arXiv:1008.0354 [hep-th])

    Google Scholar 

  20. Krajewski, T., Magnen, J., Rivasseau, V., Tanasa, A., Vitale, P.: Quantum corrections in the group field theory formulation of the EPRL/FK models. Phys. Rev. D 82, 124069 (2010), (arXiv:1007.3150 [gr-qc])

    Google Scholar 

  21. Riello, A.: Self-energy of the Lorentzian EPRL-FK spin foam model of quantum gravity. Phys. Rev. D 88, 024011 (2013), (arXiv:1302.1781 [gr-qc])

  22. Gurau, R.: Colored group field theory. Commun. Math. Phys. 304, 69 (2011), (arXiv:0907.2582 [hep-th])

  23. Gurau, R.: The 1/N expansion of colored tensor models. Annales Henri Poincaré 12, 829 (2011), (arXiv:1011.2726 [gr-qc])

  24. Gurau, R., Rivasseau, V.: The 1/N expansion of colored tensor models in arbitrary dimension. Europhys. Lett. 95, 50004 (2011), (arXiv:1101.4182 [gr-qc])

    Google Scholar 

  25. Gurau, R.: The complete 1/N expansion of colored tensor models in arbitrary dimension. Annales Henri Poincaré 13, 399 (2012), (arXiv:1102.5759 [gr-qc])

    Google Scholar 

  26. Bonzom, V.: New 1/N expansions in random tensor models. JHEP 1306, 062 (2013), (arXiv:1211.1657 [hep-th])

  27. Dartois, S., Rivasseau, V., Tanasa, A.: The 1/N expansion of multi-orientable random tensor models. (arXiv:1301.1535 [hep-th])

  28. Bonzom, V., Gurau, R., Riello, A., Rivasseau, V.: Critical behavior of colored tensor models in the large N limit. Nucl. Phys. B 853, 174 (2011), (arXiv:1105.3122 [hep-th])

  29. Bonzom, V., Gurau, R., Rivasseau, V.: The Ising model on random lattices in arbitrary dimensions. Phys. Lett. B 711, 88 (2012), (arXiv:1108.6269 [hep-th])

  30. Bonzom, V.: Multicritical tensor models and hard dimers on spherical random lattices. Phys. Lett. A 377, 501 (2013), (arXiv:1201.1931 [hep-th])

  31. Bonzom, V., Erbin, H.: Coupling of hard dimers to dynamical lattices via random tensors. J. Stat. Mech. 1209, P09009 (2012), (arXiv:1204.3798 [cond-mat.stat-mech])

  32. Benedetti, D., Gurau, R.: Phase transition in dually weighted colored tensor models. Nucl. Phys. B 855, 420 (2012), (arXiv:1108.5389 [hep-th])

  33. Gurau, R.: A generalization of the Virasoro algebra to arbitrary dimensions. Nucl. Phys. B 852, 592 (2011), (arXiv:1105.6072 [hep-th])

  34. Gurau, R.: The Schwinger Dyson equations and the algebra of constraints of random tensor models at all orders. Nucl. Phys. B 865, 133 (2012), (arXiv:1203.4965 [hep-th])

  35. Krajewski, T.: Schwinger-Dyson equations in group field theories of quantum gravity. In: Proceedings of the XXIX international colloquium on group-theoretical methods in physics (GROUP 29), (arXiv:1211.1244 [math-ph])

  36. Bonzom, V.: Revisiting random tensor models at large N via the Schwinger-Dyson equations. JHEP 1303, 160 (2013), (arXiv:1208.6216 [hep-th])

  37. Gurau, R.: Universality for random tensors. To appear in Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques, (arXiv:1111.0519 [math.PR])

  38. Ben Geloun, J., Rivasseau, V.: A renormalizable 4-dimensional tensor field theory. Commun. Math. Phys. 318, 69 (2013), (arXiv:1111.4997 [hep-th])

    Google Scholar 

  39. Ben Geloun, J.: Two and four-loop β-functions of rank 4 renormalizable tensor field theories. Class. Quant. Gravity 29, 235011 (2012), (arXiv:1205.5513 [hep-th])

    Google Scholar 

  40. Ben Geloun, J.: Asymptotic freedom of rank 4 tensor group field theory. (arXiv:1210.5490 [hep-th])

  41. Carrozza, S., Oriti, D.: Bubbles and jackets: new scaling bounds in topological group field theories. JHEP 1206, 092 (2012), (arXiv:1203.5082 [hep-th])

  42. Carrozza, S., Oriti, D., Rivasseau, V.: Renormalization of tensorial group field theories: abelian U(1) models in four dimensions. (arXiv:1207.6734 [hep-th])

  43. Ambjorn J., Durhuus B., Jonsson T.: Summing over all genera for d > 1: a toy model. Phys. Lett. B 244, 403–412 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  44. Bialas, P., Burda, Z.: Phase transition in fluctuating branched geometry. Phys. Lett. B 384, 75 (1996), (arXiv:hep-lat/9605020)

  45. Ambjorn J., Durhuus B., Frohlich J.: Diseases of triangulated random surface models, and possible cures. Nucl. Phys. B 257, 433 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  46. Ambjorn, J., Durhuus, B., Jonsson, T.: Quantum Geometry. A Statistical Field Theory Approach. University Press, Cambridge (Cambridge Monographs in Mathematical Physics), p. 363 (1997)

  47. Ambjorn, J., Jurkiewicz, J., Loll, R.: Dynamically triangulating Lorentzian quantum gravity. Nucl. Phys. B 610, 347 (2001), (hep-th/0105267)

    Google Scholar 

  48. Jonsson, T., Wheater, J.F.: The spectral dimension of the branched polymer phase of two-dimensional quantum gravity. Nucl. Phys. B 515, 549 (1998), (hep-lat/9710024)

    Google Scholar 

  49. Albenque M., Marckert J.F.: Some families of increasing planar maps. Electron. J. Probab. 13(56), 1624–1671 (2008)

    MathSciNet  MATH  Google Scholar 

  50. Pezzana M.: Sulla struttura topologica delle varietà compatte. Atti Sem. Mat. Fis. Univ. Modena 23, 269–277 (1974)

    Google Scholar 

  51. Ferri, M., Gagliardi, C.: Crystallisation moves. Pac. J. Math. 100, 1 (1982)

    Google Scholar 

  52. Gurau, R.: Lost in translation: topological singularities in group field theory. Class. Quant. Gravity 27, 235023 (2010), (arXiv:1006.0714 [hep-th])

    Google Scholar 

  53. Ryan, J.P.: Tensor models and embedded Riemann surfaces. Phys. Rev. D 85, 024010 (2012), (arXiv:1104.5471 [gr-qc])

  54. Aldous D.: The continuum random tree II: an overview (Proceeding of the Durham symposium on stochastic analysis, 1990). Lond. Math. Soc. Lect. Note Ser. 167, 23–70 (1991)

    MathSciNet  Google Scholar 

  55. Marckert J.F.: The lineage process in Galton–Watson trees and globally centered discrete snakes. Ann. Appl. Probab. 18(1), 209–244 (2009)

    Article  MathSciNet  Google Scholar 

  56. Durhuus, B., Jonsson, T., Wheater, J.F.: The spectral dimension of generic trees. (math-ph/0607020)

  57. Bonzom, V., Gurau, R., Rivasseau, V.: Random tensor models in the large N limit: uncoloring the colored tensor models. Phys. Rev. D 85, 084037 (2012), (arXiv:1202.3637 [hep-th])

Download references

Author information

Authors and Affiliations

  1. UMR 7644 École Polytechnique, Centre de Physique Théorique, 91128, Palaiseau Cedex, France

    Razvan Gurau

  2. Perimeter Institute for Theoretical Physics, 31 Caroline St. N, Waterloo, ON, N2L 2Y5, Canada

    Razvan Gurau

  3. Max Planck Institute for Gravitational Physics (Albert Einstein Institute), Potsdam, Germany

    James P. Ryan

Authors
  1. Razvan Gurau
    View author publications

    You can also search for this author inPubMed Google Scholar

  2. James P. Ryan
    View author publications

    You can also search for this author inPubMed Google Scholar

Corresponding author

Correspondence to Razvan Gurau.

Additional information

Communicated by Abdelmalek Abdesselam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurau, R., Ryan, J.P. Melons are Branched Polymers. Ann. Henri Poincaré 15, 2085–2131 (2014). https://doi.org/10.1007/s00023-013-0291-3

Download citation

  • Received: 25 February 2013

  • Accepted: 11 October 2013

  • Published: 15 December 2013

  • Issue Date: November 2014

  • DOI: https://doi.org/10.1007/s00023-013-0291-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Melon
  • Tensor Model
  • Root Vertex
  • Wick Contraction
  • Root Edge
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

18.188.188.143

Not affiliated

Springer Nature

© 2025 Springer Nature