Skip to main content
Log in

A Multi-grid Decoupling Method for the Coupled Fluid Flow with the Porous Media Flow

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

In this paper, we propose a multi-grid decoupling method for the coupled Navier–Stokes–Darcy problem with the Beavers–Joseph–Saffman interface condition. The basic idea of the method is to first solve a much smaller global problem on a very coarse initial grid, then solve a linearized Newton problem and a Darcy problem in parallel on all the subsequently refined grids. Error bounds of the approximate solution for the proposed method are analyzed, and optimal error estimates are obtained. Numerical experiments are conducted to verify the theoretical analysis and indicate the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arbogast, T., Brunson, D.S.: A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium. Comput. Geosci. 11, 207–218 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30, 197–207 (1967)

    Article  ADS  Google Scholar 

  3. Boubendir, Y., Tlupova, S.: Domain decomposition methods for solving Stokes–Darcy problems with bondary integrals. SIAM J. Sci. Comput. 35, B82–B106 (2013)

    Article  MATH  Google Scholar 

  4. Cai, M.C., Mu, M.: A multilevel decoupled method for a mixed Stokes/Darcy model. J. Comput. Appl. Math. 236, 2452–2465 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, M.C., Mu, M., Xu, J.C.: Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications. J. Comput. Appl. Math. 233, 346–355 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Cai, M.C., Mu, M., Xu, J.C.: Numerical solution to a mixed Navier–Stokes/Darcy model by the two-grid approach. SIAM J. Numer. Anal. 47, 3325–3338 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cao, Y.Z., Gunburger, M., Hua, F., Wang, X.M.: Coupled Stokes–Darcy model with Beavers–Joseph interface boundary condition. Commun. Math. Sci. 8, 1–25 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cao, Y.Z., Gunzburger, M., Hu, X.L., Hua, F., Wang, X.M., Zhao, W.: Finite element approximations for Stokes–Darcy flow with Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 47, 4239–4256 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cao, Y.Z., Gunzburger, M., He, X.M., Wang, X.M.: Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition. Numer. Math. 117, 601–629 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chen, W., Chen, P., Gunzburger, M., Yan, N.: Superconvergence analysis of FEMs for the Stokes–Darcy system. Math. Methods Appl. Sci. 33, 1605–1617 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, W., Gunzburger, M., Hua, F., Wang, X.M.: A parallel Robin–Robin domain decomposition method for the Stokes–Darcy system. SIAM J. Numer. Anal. 49, 1064–1084 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chtdyagwai, P., Rivière, B.: A two-grid method for coupled free flow with porous media flow. Adv. Water Resour. 34, 1113–1123 (2011)

    Article  ADS  Google Scholar 

  13. Chtdyagwai, P., Rivière, B.: On the solution of the coupled Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 198, 3806–3820 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Discacciati, M.: Domain decomposition methods for the coupling of surface and groundwater flows. Ph.D. dissertation, École Polytechnique Fédérale de Lausanne (2004)

  15. Discacciati, M., Miglio, E., Quarteroni, A.: Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math. 43, 57–74 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Discacciati, M., Quarteroni, A.: Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations. Comput. Vis. Sci. 6, 93–103 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Discacciati, M., Quarteroni, A., Valli, A.: Robin–Robin domain decomposition methods for the Stokes–Darcy coupling. SIAM J. Numer. Anal. 45, 1246–1268 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Discacciati, M., Quarteroni, A.: Analysis of a domain decomposition method for the coupling Stokes and Darcy equations. In: Brezzi, F., et al. (eds.) Numerical Analysis and Advanced Applications—Enumath 2001, pp. 3–20. Springer, Milan (2003)

    Google Scholar 

  19. Du, G.Z., Hou, Y.R., Zuo, L.Y.: Local and parallel finite element methods for the mixed Navier–Stokes/Darcy model. Int. J. Comput. Math. 93, 1155–1172 (2016)

  20. Du, G.Z., Hou, Y.R., Zuo, L.Y.: A modified local and parallel finite element method for the mixed Stokes–Darcy model. J. Math. Anal. Appl. 435, 1129–1145 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1997)

    Google Scholar 

  22. Feng, W.Q., He, X.M., Wang, Z., Zhang, X.: Non-iterative domain decomposition methods for a non-stationary Stokes–Darcy model with the Beavers–Joseph interface condition. Appl. Math. Comput. 219, 453–463 (2012)

    MathSciNet  MATH  Google Scholar 

  23. Hou, Y.R.: Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes–Darcy model. Appl. Math. Lett. 57, 90–96 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. He, X.M., Li, J., Liu, Y.P., Ming, J.: A domain decomposition method for the steady-state Navier–Stokes–Darcy model with the Beavers–Joseph interface condition. SIAM J. Sci. Comput. 37, S264–S290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jiang, B.: A parallel domain decomposition method for coupling of surface and groundwarter flows. Comput. Methods Appl. Mech. Eng. 198, 947–957 (2009)

    Article  ADS  MATH  Google Scholar 

  26. Kanschat, G., Rivière, B.: A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys. 229, 5933–5943 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Layton, W.J., Schieweck, F., Yotov, I.: Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 2195–2218 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  28. Li, R., Li, J., Chen, Z.X., Gao, Y.L.: A stabilized finite element method based on two local Gauss integrations for a coupled Stokes–Darcy problem. J. Comput. Appl. Math. 292, 92–104 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. Mu, M., Zhu, X.H.: Decoupled schemes for a non-stationary mixed Stokes–Darcy model. Math. Comput. 79, 707–731 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Mu, M., Xu, J.C.: A two-grid methods of a mixed Stokes–Darcy model for coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 45, 1801–1813 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Rivière, B.: Analysis of a discontinuous finite element method for the coupled Stokes and Darcy problems. J. Sci. Comput. 22, 479–500 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Rivière, B., Yotov, I.: Locally conservative coupling of Stokes and Darcy flows. SIAM J. Numer. Anal. 42, 1959–1977 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Rui, H., Zhang, R.: A unified stabilized mixed finite element method for coupling Stokes and Darcy flows. Comput. Methods Appl. Mech. Eng. 198, 2692–2699 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Saffman, P.G.: On the boundary condition at the interface of a porous medium. Stud. Appl. Math. 1, 77–84 (1971)

    Google Scholar 

  35. Shan, L., Zheng, H.B.: Partitioned time stepping method for fully evolutionary Stokes–Darcy flow with the Beavers–Joseph interface conditions. SIAM J. Numer. Anal. 51, 813–839 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  36. Shan, L., Zheng, H.B., Layton, W.J.: A decoupling method with different subdomain time steps for the nonstationary Stokes–Darcy model. Numer. Methods Partial Differ. Equ. 29, 549–583 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Urquiza, J.M., N’Dri, D., Garon, A., Delfour, M.C.: Coupling Stokes and Darcy equations. Appl. Numer. Math. 58, 525–538 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  38. Zuo, L.Y., Hou, Y.R.: A decoupling two-grid algorithm for the mixed Stokes–Darcy model with the Beavers–Joseph interface condition. Numer. Methods Partial Differ. Equ. 3, 1066–1082 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zuo, L.Y., Hou, Y.R.: Numerical analysis for the mixed Navier–Stokes and Darcy problem with the Beavers–Joseph interface condition. Numer. Methods Partial Differ. Equ. 31, 1009–1030 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zuo, L.Y., Hou, Y.R.: A two-grid decoupling method for the mixed Stokes–Darcy model. J. Comput. Appl. Math. 275, 139–147 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyun Zuo.

Additional information

Communicated by A. Quarteroni

Subsidized by the National Nature Science Foundation of China (Grant Nos. 11701343, 11571274, 11401466) and the Provincial Natural Science Foundation of Shandong (Grant No. ZR2017BA027).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, L., Du, G. A Multi-grid Decoupling Method for the Coupled Fluid Flow with the Porous Media Flow. J. Math. Fluid Mech. 20, 683–695 (2018). https://doi.org/10.1007/s00021-017-0340-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-017-0340-7

Keywords

Navigation