Skip to main content
Log in

Generalized Forchheimer Flows of Isentropic Gases

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We consider generalized Forchheimer flows of either isentropic gases or slightly compressible fluids in porous media. By using Muskat’s and Ward’s general form of the Forchheimer equations, we describe the fluid dynamics by a doubly nonlinear parabolic equation for the appropriately defined pseudo-pressure. The volumetric flux boundary condition is converted to a time-dependent Robin-type boundary condition for this pseudo-pressure. We study the corresponding initial boundary value problem, and estimate the \(L^\infty \) and \(W^{1,2-a}\) (with \(0<a<1\)) norms for the solution on the entire domain in terms of the initial and boundary data. It is carried out by using a suitable trace theorem and an appropriate modification of Moser’s iteration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183(3), 311–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aulisa, E., Bloshanskaya, L., Hoang, L., Ibragimov, A.: Analysis of generalized Forchheimer flows of compressible fluids in porous media. J. Math. Phys. 50(10), 103102 (2009). (p. 44)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Bear, J.: Dynamics of Fluids in Porous Media. American Elsevier Pub. Co., New York (1972)

    MATH  Google Scholar 

  4. Darcy, H.: Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris (1856)

    Google Scholar 

  5. DiBenedetto, E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993)

    Book  MATH  Google Scholar 

  6. DiBenedetto, E., Gianazza, U., Vespri, V.: Harnack’s Inequality for Degenerate and Singular Parabolic Equations. Springer Monographs in Mathematics. Springer, New York (2012)

    Book  MATH  Google Scholar 

  7. Douglas, J.J., Paes-Leme, P.J., Giorgi, T.:. Generalized Forchheimer flow in porous media. In: Boundary Value Problems for Partial Differential Equations and Applications, Volume 29 of RMA Res. Notes Appl. Math., pp. 99–111. Masson, Paris (1993)

  8. Forchheimer, P.: Wasserbewegung durch Boden. Zeit. Ver. Deut. Ing. 45, 1781–1788 (1901)

    Google Scholar 

  9. Forchheimer, P.: Hydraulik. Number Leipzig, 3rd edn. B. G. Teubner, Berlin (1930)

    MATH  Google Scholar 

  10. Hoang, L., Ibragimov, A.: Qualitative study of generalized Forchheimer flows with the flux boundary condition. Adv. Differ. Equ. 17(5–6), 511–556 (2012)

    MathSciNet  MATH  Google Scholar 

  11. Hoang, L., Ibragimov, A., Kieu, T., Sobol, Z.: Stability of solutions to generalized Forchheimer equations of any degree. J. Math. Sci. 210(4), 476–544 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hoang, L., Kieu, T.: Interior estimates for generalized Forchheimer flows of slightly compressible fluids. Preprint (submitted) (2014). http://arxiv.org/abs/1404.6517

  13. Hoang, L., Kieu, T.:. Global estimates for generalized Forchheimer flows of slightly compressible fluids. J. d’Anal. Math. (2015) (accepted)

  14. Hoang, L.T., Ibragimov, A., Kieu, T.T.: One-dimensional two-phase generalized Forchheimer flows of incompressible fluids. J. Math. Anal. Appl. 401(2), 921–938 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Hoang, L.T., Ibragimov, A., Kieu, T.T.: A family of steady two-phase generalized Forchheimer flows and their linear stability analysis. J. Math. Phys. 55(12), 123101 (2014). (p. 32)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Hoang, L.T., Kieu, T.T., Phan, T.V.: Properties of generalized Forchheimer flows in porous media. J. Math. Sci. 202(2), 259–332 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Ivanov, A.V.: Second-order quasilinear degenerate and nonuniformly elliptic and parabolic equations. Tr. Mat. Inst. Steklova 160, 285 (1982)

    MathSciNet  Google Scholar 

  18. Ivanov, A.V.: The regularity theory for \((M,L)\)-Laplacian parabolic equation. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 243 (Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsii. 28):87–110, 339 (1997)

  19. Kieu, T.: Analysis of expanded mixed finite element methods for the generalized Forchheimer flows of slightly compressible fluids. Numer. Methods Partial Differ. Equ. 32(1), 60–85 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kinnunen, J., Kuusi, T.: Local behaviour of solutions to doubly nonlinear parabolic equations. Math. Ann. 337(3), 705–728 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Ladyženskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and quasilinear equations of parabolic type. Translated from the Russian by S. Smith. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence (1968)

  22. Lieberman, G.M.: Second Order Parabolic Differential Equations. World Scientific Publishing Co., Inc., River Edge (1996)

    Book  MATH  Google Scholar 

  23. Manfredi, J.J., Vespri, V.: Large time behavior of solutions to a class of doubly nonlinear parabolic equations. Electron. J. Differ. Equ. 02, 17 (1994). (electronic only)

    MathSciNet  MATH  Google Scholar 

  24. Moser, J.: On a pointwise estimate for parabolic differential equations. Commun. Pure Appl. Math. 24(5), 727–740 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  25. Muskat, M.: The Flow of Homogeneous Fluids Through Porous Media. McGraw-Hill Book Company Inc., New York (1937)

    MATH  Google Scholar 

  26. Nield, D.A., Bejan, A.: Convection in Porous Media, 4th edn. Springer, New York (2013)

    Book  MATH  Google Scholar 

  27. Park, E.-J.: Mixed finite element methods for generalized Forchheimer flow in porous media. Numer. Methods Partial Differ. Equ. 21(2), 213–228 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  28. Straughan, B.: Stability and Wave Motion in Porous Media, Volume 165 of Applied Mathematical Sciences. Springer, New York (2008)

    Google Scholar 

  29. Surnachëv, M.D.: On improved estimates for parabolic equations with double degeneration. Tr. Mat. Inst. Steklova (Differentsialnye Uravneniya i Dinamicheskie Sistemy) 278, 250–259 (2012)

    MathSciNet  MATH  Google Scholar 

  30. Tsutsumi, M.: On solutions of some doubly nonlinear degenerate parabolic equations with absorption. J. Math. Anal. Appl. 132(1), 187–212 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vázquez, J.L.: The Porous Medium Equation. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, Oxford. Mathematical theory (2007)

  32. Vespri, V.: On the local behaviour of solutions of a certain class of doubly nonlinear parabolic equations. Manuscripta Math. 75(1), 65–80 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ward, J.C.: Turbulent flow in porous media. J. Hydraul. Div. Proc. Am. Soc. Civ. Eng. 90(HY5), 1–12 (1964)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luan Hoang.

Additional information

Communicated by E. Feireisl

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, E., Hoang, L. & Kieu, T. Generalized Forchheimer Flows of Isentropic Gases. J. Math. Fluid Mech. 20, 83–115 (2018). https://doi.org/10.1007/s00021-016-0313-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-016-0313-2

Navigation