Skip to main content
Log in

Well-Posedness, Instabilities, and Bifurcation Results for the Flow in a Rotating Hele–Shaw Cell

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study the radial movement of an incompressible fluid located in a Hele–Shaw cell rotating at a constant angular velocity in the horizontal plane. Within an analytic framework, local existence and uniqueness of solutions is proved, and it is shown that the unique rotationally invariant equilibrium of the flow is unstable. There are, however, other time-independent solutions: using surface tension as a bifurcation parameter we establish the existence of global bifurcation branches consisting of stationary fingering patterns. The same results can be obtained by fixing the surface tension while varying the angular velocity. Finally, it is shown that the equilibria on a global bifurcation branch converge to a circle as the surface tension tends to infinity, provided they stay suitably bounded.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann H.: Linear and Quasilinear Parabolic Problems, vol I. Birkhäuser, Basel (1995)

    Book  Google Scholar 

  2. Arendt W., Bu S.: Operator-valued Fourier multipliers on periodic Besov spaces and applications. Proc. Edinb. Math. Soc. 47, 15–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bear J., Bachmat Y.: Introduction to Modeling of Transport Phenomena in Porous Media. Kluwer Academic Publisher, Boston (1990)

    Book  Google Scholar 

  4. Buffoni B., Toland J.: Analytic Theory of Global Bifurcation: An Introduction. Princeton University Press, New Jersey (2003)

    MATH  Google Scholar 

  5. Chen C.-Y., Wang S.-W.: Interfacial instabilities of miscible fluids in a rotating Hele–Shaw cell. Fluid Dyn. Res. 30 315–330 (2002)

    Article  ADS  Google Scholar 

  6. Carrillo L., Magdaleno F.X., Casademunt J., Ortín J.: Experiments in a rotating Hele–Shaw cell. Phys. Rev. E 54(6), 6260–6267 (1996)

    Article  ADS  Google Scholar 

  7. Carrillo L., Soriano J., Ortín J.: Interfacial instabilities of a fluid annulus in a rotating Hele–Shaw cell. Phys. Fluids 12(7), 1685–1698 (2000)

    Article  ADS  Google Scholar 

  8. Crandall M.G., Rabinowitz P.H.: Bifurcation from simple eigenvalues. J. Funct. Anal. 8, 321–340 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cui S., Escher J.: Bifurcation analysis of an elliptic free boundary problem modelling the growth of avascular tumors. SIAM J. Math. Anal. 39(1), 210–235 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Escher J., Ito K.: Some dynamic properties of volume preserving curvature driven flows. Math. Ann. 333, 213–230 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Escher, J., Matioc, B.-V.: A moving boundary problem for periodic Stokesian Hele–Shaw flows. Interfaces Free Bound. (11):119–137 (2009)

    Google Scholar 

  12. Escher, J., Matioc, A.-V., Matioc, B.-V.: Classical solutions and stability results for Stokesian Hele–Shaw flows. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (to appear)

  13. Escher J., Seiler J.: Bounded H calculus for pseudodifferential operators and applications to the Dirichlet–Neumann operator. Trans. Am. Math. Soc. 360(8), 3945–3973 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Escher J., Simonett G.: Classical solutions of multidimensional Hele–Shaw models. SIAM J. Math. Anal. 28(5), 1028–1047 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gilbarg D., Trudinger T.S.: Elliptic Partial Differential Equations of Second Order. Springer, New York (1997)

    Google Scholar 

  16. Folch, R., Alvarez-Lacalle, E., Ortín, J., Casademunt, J.: Spontaneous pinch-off in rotating Hele–Shaw flows, arXiv:physics/0408092v1

  17. Taylor A.E., Lay D.C.: Introduction to Functional Analysis. Wiley, New York (1980)

    MATH  Google Scholar 

  18. Kato T.: Perturbation Theory for Linear Operators. Springer, Berlin (1995)

    MATH  Google Scholar 

  19. Lunardi A.: Analytic Semigroups and Optimal Regularity in Parabolic Problems. Birkhäuser, Basel (1995)

    Book  MATH  Google Scholar 

  20. Matioc, A.-V.: Modeling and analysis of nonnecrotic tumors. Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken (2009)

  21. Miranda J.A., Alvarez-Lacalle E.: Viscosity contrast effects on fingering formation in rotating Hele–Shaw flows. Phys. Rev. E 72, 026306 (2005)

    Article  ADS  Google Scholar 

  22. Ozawa S. et al.: Identifying rotation and oscillation in surface tension measurement using an oscillating droplet method. Heat Transf. Asian Res. 37(7), 421–430 (2008)

    Article  Google Scholar 

  23. Saffman P.G., Taylor G.I.: The penetration of a fluid into a porous medium or Hele–Shaw cell containing a more viscous fluid. Proc. R. Soc. A 245, 312–329 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Zhou F., Escher J., Cui S.: Bifurcation for a free boundary problem with surface tension modeling the growth of multi-layer tumors. J. Math. Anal. Appl. 337(1), 443–457 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Escher.

Additional information

Communicated by A. Constantin

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehrnström, M., Escher, J. & Matioc, BV. Well-Posedness, Instabilities, and Bifurcation Results for the Flow in a Rotating Hele–Shaw Cell. J. Math. Fluid Mech. 13, 271–293 (2011). https://doi.org/10.1007/s00021-010-0022-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00021-010-0022-1

Mathematics Subject Classification (2000)

Keywords

Navigation